Limit and Colimit

stma

2021/3/27

I often forget the conceptual background of these well known universal constructions. This bothers me especially when I need to give a new mathematical instrument the conceptual meaning as the extended or restricted version of limit or colimit. Here I write of limit/colimit that include definitions and some concrete examples of instantiating the concept, in order for reminding me of least rigoristic idea that activate the lost memory.

Definition. Let C, D, E are categories and functors F and G are given as: $D \xrightarrow{F} C \xleftarrow{G} E$. The comma category $(F \downarrow G)$ is a category composed of a triple $(d, e, f : Fd \to Ge)$ as an object and the morphism $H : (d, e, f) \to (d', e', f')$ is a pair of morphisms $H_D : d \to d'$ and $H_E : e \to e'$ (we write these only as H) that commutes the following diagram:

$$\begin{array}{ccc} Fd & \stackrel{f}{\longrightarrow} Ge \\ & \downarrow_{FH} & \downarrow_{GH} \\ Fd' & \stackrel{f'}{\longrightarrow} Ge' \end{array}$$

Note that this definition generalizes the case when a functor is an object c of the category C, since c can be regarded as the functor $c : \mathbf{1} \to C$. In this sense, when both the functors F, G are objects $d, e \in C$, then the corresponding comma category is exactly the hom-set written as:

$$(F \downarrow G) = (d \downarrow e) = \hom_C(d, e).$$

Definition. Let C, J be categories (J is called index category, usually taken to be small or finite). The diagonal functor $\Delta : C \to C^J$ is the functor that maps for each object the constant functor Δc , and for each morphism, the morphism function that assigns each index constantly to the given morphism as in the diagram:

$$c = \Delta c_i = \Delta c_j = c$$

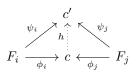
$$\downarrow f = \Delta f_i \qquad \qquad \downarrow f = \Delta f_j$$

$$c' = \Delta c'_i = \Delta c'_j = c'$$

Definition. Let $F : J \to C$ be a functor. If exists, the initial object of comma category $(F \downarrow \Delta)$, regarding the functors F, Δ as to fit in the sequence $\mathbf{1} \to C^J \xleftarrow{\Delta} C$, is called the colimit (of F), denoted $\lim_{X \to C} F$.

Definition. Let $F: J \to C$ be a functor. If exists, the terminal object of comma category $(\Delta \downarrow F)$, regarding the functors Δ, F as to fit in the sequence $C \xrightarrow{\Delta} C^J \leftarrow \mathbf{1}$, is called the limit (of F), denoted $\lim_{t \to T} F$.

Example. Coproduct is the colimit of $\{F_j\}_{j \in J} \subset Ob(C)$, regarding the corresponding functor $F : J \to C$ as indexed objects. We usually denote $\bigsqcup c_j$ for the coproduct of given indexed objects. In the following diagram, the colimit as the universal arrow is (c, ϕ) :



Example. Let J be a category of two objects a, b and two morphisms $f, g : a \to b$. Then an object of the category C^J is exactly a pair of morphisms, also denote $f, g : a \to b$ in C. We call the colimit of $(f,g) \in C^J$ the coequalizer (of (f,g)). An object $(c, k : (f,g) \to \Delta c)$ of comma category $((f,g), \Delta)$ can be represented by a commutative diagram:

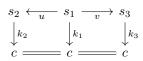
$$\begin{array}{c} a \xrightarrow{f} b \\ \downarrow^{k_a} & \downarrow^{k_b} \\ c \xrightarrow{g} c \end{array}$$

Hence the coequalizer of (f,g) is the pair (c,k) such that for any (d,l), there is unique morphism $c \to d$ in C that commutes the following diagram:

$$a \xrightarrow{f} b \xrightarrow{l_b} c$$

Example. When C is the category of abelian group Ab or the category of R-module RMod for a certain ring R, and suppose g = 0, then the coequalizer of (f, g) is the quotient $(b/\text{Im}f, \pi)$.

Example. Let J denotes an index category $\cdot \leftarrow \cdot \rightarrow \cdot$, then an object of C^J is again of the same shape, namely $F = (s_2 \xleftarrow{u} s_1 \xrightarrow{v} s_3) \in C^J$. Any element $(c, k : F \rightarrow \Delta c) \in C^J$ suffices the commutative diagram:



hence the colimit of F, called pushout of \mathbf{F} , is a pair $(c, k : F \to \Delta c)$ that for any pair (d, l), there exists unique morphism $c \to d$ such that the following diagram commutes:

