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1. Boolean algebra (∧,∨,¬): complemented distributive lattice,

2. Heyting algebra (∧,∨,→): distributive bounded lattice equipped with implication.

Proposition 1. The following implication axioms of Heyting algebra H are equivalent:

� (a → b) = max{x ∈ H : a ∧ x ≤ b}.

� (x ∧ a) ≤ b ⇐⇒ x ≤ (a → b), ∀x ∈ H.

Proof. Since H is bounded, the second statement is only the definition of maximum element under the
given condition.

Proposition 2. Boolean algebra is a Heyting algebra.

Proof. Given a boolean algebra B, we can canonically define the implication a → b as:

a → b ⇐⇒ ¬(a ∧ ¬b),

in which the later implies (¬a ∨ b) by the De Morgan’s law. Therefore it is enough to check if the
implication suffices the axiom:

(c ∧ a) ≤ b ⇐⇒ c ≤ (a → b); a, b, c ∈ B

For the only if part, assume c ≤ (a ∧ ¬b), then we have:

(c ≤ a) ∧ (c ≤ ¬b)
=⇒ ((c ∧ a) ≤ (b ∧ a)) ∧ ((c ∧ a) ≤ (¬b ∧ a))

=⇒ (c ∧ a) ≤ ((¬b ∧ a) ∧ (b ∧ a))

=⇒ (c ∧ a) ≤ 0

The premise (c ∧ a) = 0 indicates that the conclusion c ≤ (a → b) is universal, which is not the case,
contradiction.

For the if part, we have c ≤ (¬a ∨ b) by assumption. Then,

(c ∧ a) ≤ ((¬a ∨ b) ∧ a)

=⇒ (c ∧ a) ≤ (b ∧ a) ≤ b.

Proposition 3. In a Heyting algebra H, by defining pseudo-negation by ¬a := (a → 0), the following
holds:

a ≤ ¬¬a.

Proof. For an arbitrary a ∈ H, we have

(a ∧ (a → 0)) ≤ 0

⇐⇒ a ≤ ((a → 0) → 0) = ¬¬a
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Corollary 1.
¬a ∧ a = 0,∀a ∈ H

Proof.
a ≤ ¬¬a = (¬a → 0) ⇐⇒ a ∧ ¬a ≤ 0.

Proposition 4. In a Heyting algebra H, the following conditions are equivalent:

1. the excluded middle: (∀a ∈ H)(a ∨ ¬a = 1),

2. the double negation elimination: (∀a ∈ H)(¬¬a = a).

Proof. From 1 to 2,

¬¬a = (¬¬a ∧ a)

⇐⇒ ¬¬a ≤ a.

From 2 to 1, suppose a ∧ ¬a < 1 for some a ∈ H. Then a ∧ ¬¬a < ¬¬a is deduced that shows
a < ¬¬a.

Proposition 5. De Morgan’s Law In a Heyting algebra H, the followings holds:

1. ¬(a ∨ b) = ¬a ∧ ¬b, ∀a, b ∈ H,

2. ¬(a ∧ b) = ¬¬(¬a ∨ ¬b), ∀a, b ∈ H

Proof. For 1, because a ≤ a ∨ b, we have:

a ∧ ¬(a ∨ b) ≤ ((a ∨ b) ∧ ¬(a ∨ b)) = 0

⇐⇒ ¬(a ∨ b) ∧ a ≤ 0

⇐⇒ ¬(a ∨ b) ≤ ¬a.

Analogous argument holds for b, hence we have ¬(a ∨ b) ≤ (¬a ∧ ¬b).
On the other hands, observe that (¬a ∧ b) ∧ (a ∨ b) = (¬a ∧ b) ∧ (a ∧ ¬b) = 0. Thus we have

(¬a ∧ ¬b) ≤ ¬(a ∨ b). 1 is proved.
For 2,

¬(a ∧ b) ∧ ¬(¬a ∨ ¬b) = ¬((a ∧ b) ∨ (¬a ∨ ¬b))
= ¬(((a ∧ b) ∨ ¬a) ∨ ((a ∧ b) ∨ ¬b))
= ¬((¬a ∨ b) ∨ (a ∨ ¬b))
= ¬1
= 0.

Hence we have ¬(a ∧ b) ≤ ¬¬(¬a ∨ ¬b).
On the other hands, we have

¬¬(¬a ∨ ¬b) ∧ (a ∧ b)

=¬(¬¬a ∧ ¬¬b) ∧ (a ∧ b)

≤¬(¬¬a ∧ ¬¬b) ∧ (¬¬a ∧ ¬¬b)
=0.

Hence we have ¬¬(¬a ∨ ¬b) ≤ ¬(a ∧ b). The proof completed.
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