Boolean algebra v.s. Heyting algebra

stma

2021/10/09

- 1. Boolean algebra (\land, \lor, \neg) : complemented distributive lattice,
- 2. Heyting algebra $(\land, \lor, \rightarrow)$: distributive bounded lattice equipped with implication.

Proposition 1. The following implication axioms of Heyting algebra H are equivalent:

- $(a \to b) = \max\{x \in H : a \land x \le b\}.$
- $(x \wedge a) \le b \iff x \le (a \to b), \quad \forall x \in H.$

Proof. Since H is bounded, the second statement is only the definition of maximum element under the given condition. \Box

Proposition 2. Boolean algebra is a Heyting algebra.

Proof. Given a boolean algebra B, we can canonically define the implication $a \rightarrow b$ as:

$$a \to b \iff \neg (a \land \neg b),$$

in which the later implies $(\neg a \lor b)$ by the De Morgan's law. Therefore it is enough to check if the implication suffices the axiom:

$$(c \wedge a) \leq b \iff c \leq (a \rightarrow b); \quad a, b, c \in B$$

For the only if part, assume $c \leq (a \land \neg b)$, then we have:

$$(c \le a) \land (c \le \neg b)$$

$$\implies ((c \land a) \le (b \land a)) \land ((c \land a) \le (\neg b \land a))$$

$$\implies (c \land a) \le ((\neg b \land a) \land (b \land a))$$

$$\implies (c \land a) \le 0$$

The premise $(c \wedge a) = 0$ indicates that the conclusion $c \leq (a \rightarrow b)$ is universal, which is not the case, contradiction.

For the if part, we have $c \leq (\neg a \lor b)$ by assumption. Then,

$$(c \wedge a) \le ((\neg a \lor b) \land a)$$
$$\implies (c \wedge a) \le (b \land a) \le b.$$

Proposition 3. In a Heyting algebra H, by defining pseudo-negation by $\neg a := (a \rightarrow 0)$, the following holds:

 $a \leq \neg \neg a$.

Proof. For an arbitrary $a \in H$, we have

$$(a \land (a \to 0)) \le 0$$
$$\iff a \le ((a \to 0) \to 0) = \neg \neg a$$

Corollary 1.

$$\neg a \land a = 0, \forall a \in H$$

Proof.

$$a \le \neg \neg a = (\neg a \to 0) \iff a \land \neg a \le 0$$

Proposition 4. In a Heyting algebra H, the following conditions are equivalent:

- 1. the excluded middle: $(\forall a \in H)(a \lor \neg a = 1),$
- 2. the double negation elimination: $(\forall a \in H)(\neg \neg a = a)$.

Proof. From 1 to 2,

$$\neg \neg a = (\neg \neg a \land a)$$
$$\iff \neg \neg a \le a.$$

From 2 to 1, suppose $a \land \neg a < 1$ for some $a \in H$. Then $a \land \neg \neg a < \neg \neg a$ is deduced that shows $a < \neg \neg a$.

Proposition 5. De Morgan's Law In a Heyting algebra H, the followings holds:

1.
$$\neg(a \lor b) = \neg a \land \neg b, \quad \forall a, b \in H,$$

2. $\neg(a \land b) = \neg \neg(\neg a \lor \neg b), \quad \forall a, b \in H$

Proof. For 1, because $a \leq a \lor b$, we have:

$$\begin{aligned} a \wedge \neg (a \lor b) &\leq \left((a \lor b) \land \neg (a \lor b) \right) = 0 \\ \Longleftrightarrow \neg (a \lor b) \land a &\leq 0 \\ \Longleftrightarrow \neg (a \lor b) &\leq \neg a. \end{aligned}$$

Analogous argument holds for b, hence we have $\neg(a \lor b) \le (\neg a \land \neg b)$.

On the other hands, observe that $(\neg a \land b) \land (a \lor b) = (\neg a \land b) \land (a \land \neg b) = 0$. Thus we have $(\neg a \land \neg b) \leq \neg(a \lor b)$. 1 is proved.

For 2,

$$\neg(a \land b) \land \neg(\neg a \lor \neg b) = \neg((a \land b) \lor (\neg a \lor \neg b))$$

= $\neg(((a \land b) \lor \neg a) \lor ((a \land b) \lor \neg b))$
= $\neg((\neg a \lor b) \lor (a \lor \neg b))$
= $\neg 1$
= 0.

Hence we have $\neg(a \land b) \leq \neg \neg(\neg a \lor \neg b)$.

On the other hands, we have

$$\neg \neg (\neg a \lor \neg b) \land (a \land b)$$

= $\neg (\neg \neg a \land \neg \neg b) \land (a \land b)$
 $\leq \neg (\neg \neg a \land \neg \neg b) \land (\neg \neg a \land \neg \neg b)$
=0.

Hence we have $\neg \neg (\neg a \lor \neg b) \leq \neg (a \land b)$. The proof completed.