K-Theory 1-2

stma

November 21, 2022

1 Preliminary

1.1 group and its action

1.1.1 group action in algebraic setting

Definition. G:group, X:set.

$$
\triangleright: G \times X \rightarrow X ;(g, x) \mapsto g \triangleright x .
$$

is called the action of G on the left on X (a.k.a. $G \curvearrowright X$) when the following conditions are satisfied:

1. associativity: $(g \cdot h) \triangleright x=g \triangleright(h \triangleright x)$,
2. identity: $e \triangleright x=x$.

Note. For arbitrary $g \in G, x \mapsto g \triangleright x$ is a bijection of X.
Note. By the exponential law in set, which asserts that there is an one-to-one relationship between maps from the product and maps of maps, namely:

$$
X^{G \times X} \cong\left(X^{X}\right)^{G}
$$

We can consider the group action as a group homomorphism of G to the symmetric group of X since the functorial property of groups recover the associativity and identity together with one-to-one mapping obtained by exponential law. Hence G is said to act on X if a group homomorphism is given by:

$$
\rho: G \rightarrow \operatorname{Sym}(X)
$$

Note. The right action is also defined by reversing the direction from which the left group action defined. The statement corresponding to associativity is then given by:

$$
\text { 1. }{ }^{\prime} x \triangleleft(h \cdot g)=(x \triangleleft h) \triangleleft g \text {. }
$$

Note. $G \triangleright G$ and $G \triangleleft G$.

1.1.2 induced right action from left action

$G \triangleright X(\mathrm{X}$ is G-set). Then,

$$
\triangleleft: X \times G \rightarrow X ;(x, g) \mapsto g^{-1} \triangleright x
$$

is a (induced) right action.
Example. juxtaposition of loops as right action.
Example. composition of bijection as left action.

1.1.3 G-equivalent maps

Definition.

$$
\begin{array}{r}
G \in \mathbf{G r p}, X, Y \in \mathbf{S e t} \\
G \triangleright X, G \triangleright Y, \quad f: X \rightarrow Y \quad \text { map }
\end{array}
$$

f is G-equivalent iff the following diagram commutes:

1.1.4 type of actions

Definition. (transitive action)

$$
G \triangleright X
$$

G-action is called transitive on X iff

$$
(\forall x, y \in X)(\exists g \in G) \text { s.t. } g \triangleright x=y
$$

Note. Transitive action gives the acting set a sense of symmetry, which is somewhat corresponding to the translation invariance of a vector space, in which the action is defined by sum for each element.

Definition. (faithful action)

$$
G \triangleright X
$$

G-action is called faithful on X iff

$$
\begin{array}{r}
(\forall g, h \in X \text { s.t. } g \neq h)(\exists x \in X) \text { s.t. } g x \neq g y \text {, or equivalently, } \\
\triangleright: G \rightarrow \operatorname{Sym}(X) \text { has trivial kernel. }
\end{array}
$$

1.1.5 group action in topological setting

Definition. G: top. group., X: top. space.

$$
\triangleright: G \times X \rightarrow X ;(g, x) \mapsto g \triangleright x .
$$

is called the continuous action of G on the left on X if the it suffices the following conditions:

1. $G \curvearrowright X$,
2. \triangleright is continuous on product topology.

Note. A continuous faithful action of topological group G on a space X is thought of as a group of homeomorphism. This is because $g \in G$ defines a continuous bijection $\{g\} \times X \rightarrow X$ and so it does its inverse g^{-1}. Faithfulness asserts that $G \subset \operatorname{Homeo}(X)$ as the subgroup.

1.1.6 examples

Example. \mathbb{Z}_{2} acts (as product group) on any Abelian group X by

$$
(\pm 1, x) \mapsto \pm x
$$

Example. Symmetry group $\operatorname{Sym}(X)$ of a set X acts on X by

$$
(\sigma, x) \mapsto \sigma x
$$

Example. $\operatorname{GL}(n, \mathbb{R}) \curvearrowright \mathbb{R}^{n}$
Example. The rotation in $X=S^{1}$ can be thought of as $S^{1} \curvearrowright X$, by:

$$
\left(S^{1}, X\right) \ni\left(e^{i s}, e^{i t}\right) \mapsto e^{i(s+t)} \in X
$$

2 Vector Bundle

2.1 Basics

2.1.1 Definition of vector bundle

Definition. A map $p: E \rightarrow B$ is called n-dimensional real vector bundle if all the following statements are hold:

1. fiber isomorphisms: $\forall x \in B$, there exists an isomorphism $\mathbb{R}^{n} \rightarrow p^{-1}(x)$.
2. local triviality: $\forall x \in B, \exists U \in \mathcal{V}(x)$, there exists a homeomorphism $h_{U}: U \times \mathbb{R}^{n} \rightarrow p^{-1}(U)$ such that $p\left(h_{U}(x, v)\right)=x$ and h_{U} is restricted to the linear isomorphism $\{x\} \times \mathbb{R}^{n} \rightarrow p^{-1}(x) . h_{U}$ is called coordinate function.
3. coordinate transformations For a pair of coordinate functions h_{U}, h_{V} with $U \cap V \neq \varnothing$, the homeomorphism $g_{V U}=h_{V}^{-1} \circ h_{U}: U \cap V \times \mathbb{R}^{n} \rightarrow U \cap V \times \mathbb{R}^{n}$ restricts to a homeomorphism of \mathbb{R}^{n} for each $x \in U \cap V$ that coincides with the action of G , namely:

$$
g_{V U}(x, v)=(x, g v) \text { for some } g \in G
$$

$g_{V U}$ is called coordinate transformation or transition function from the coordinate neighbourhood U to V . By exponential law together with the first two conditions, a transition function is thought of implicitly as a map $g_{V U}: U \cap V \rightarrow G$.

Note. From the definition, one can immediately deduce the following properties:

- group of the bundle: A subgroup G of $\mathrm{GL}(n, \mathbb{R})$ is given to faithfully and continuously act on \mathbb{R}^{n} (depending on the local charts). G is called group of the bundle or in a literature structure group.
- cocycle condition 1-Čech cochain of coefficients G is only a map from $U \cap V$ to G , defined when $U \cap V \neq \varnothing$. Hence transition functions are thought of 1-Cech cochains on X. Every transition functions suffices the following condition corresponding to the cocycle condition:

$$
g_{W V} \cdot g_{V U}=g_{W U}, \quad \text { if } U \cap V \cap W \neq \varnothing
$$

2.1.2 Isomorphism of vector bundle

Definition. An isomorphism between vector bundles $p_{1}: E_{1} \rightarrow B$ and $p_{2}: E_{2} \rightarrow B$ over the same base space B is a homeomorphism $h: E_{1} \rightarrow E_{2}$ taking each fiber $p_{1}^{-1}(b)$ to the corresponding fiber $p_{2}^{-1}(b)$ by a linear isomorphism. Thus an isomorphism preserves all the structure of a vector bundle, so isomorphic bundles are often regarded as the same. We use the notation $E_{1} \cong E_{2}$ to indicate that E_{1} and E_{2} are isomorphic.

Note. A map $h: E_{1} \rightarrow E_{2}$ between vector bundles $p_{i}: E_{i} \rightarrow B_{i}$ over homeomorphic bases $f: B_{1} \rightarrow B_{2}$ is an isomorphism iff:
h takes each fiber $p_{1}^{-1}(b)$ to the corresponding fiber $p_{2}^{-1}(f(b))$ by a linear isomorphism,
Note. Assume that an isomorphism h between vector bundles E_{1}, E_{2} are given as:

Then the coordinate transformation g_{21}^{\prime} of E_{2} from U_{1} to U_{2} is expressed with g_{21} of E_{1} in the form:

$$
g_{21}^{\prime}=h g_{21} h^{-1}
$$

where h is appropriately restricted on $U_{1} \cap U_{2}$. This is seen as in the following commutative diagram:

2.1.3 Fundamental examples of vector bundle

Example. trivial bundle The canonical projection $p: X \times \mathbb{R}^{n} \rightarrow X$ of product space is a vector bundle called trivial bundle over X. The structure group can be reduced to the trivial group $\{e\} \subset \mathrm{GL}(n, \mathbb{R})$.

Example. Mobius bundle M is defined as a quotient space of $I \times \mathbb{R}$ under the identification of $(0, t) \sim$ $(1,-t)$. The canonical projection $p^{\prime}: I \times \mathbb{R} \rightarrow I$ induces universal arrows (pushout) $I \xrightarrow{q} S^{1} \stackrel{p}{\leftarrow} M$ that commutes the following diagram:

The fiber $p^{-1}(x)$ is homeomorphic to \mathbb{R} and the group of bundle can be reduced to $\mathbb{Z}_{2} \cong\{ \pm 1\} \subset$ $\mathrm{GL}(1, \mathbb{R})$. To justify that \mathbb{Z}_{2} acts on the model fiber \mathbb{R} of M̈obius bundle along with efficiently chosen local trivializations, one will need to identify M with so called canonical line bundle $\mathfrak{L}_{\mathbb{R} P^{1}} \rightarrow \mathbb{R} P^{1}$, we introduce later.

Example. canonical line bundle $E=\mathfrak{L}_{\mathbb{R} P^{1}}$ is defined as:

$$
p: E=\left\{(l, v) \in \mathbb{R} P^{1} \times \mathbb{R}^{2}: v \in l\right\} \rightarrow \mathbb{R} P^{1} ; \quad p(l, v)=l
$$

Note. The line in $\mathbb{R} P^{1}$ is considered to be embedded in \mathbb{R}^{2} as the 1-dimensional subspace without antipodal identification (therefore the $v \in l$ can be zero despite the original line $l \in \mathbb{R} P^{*}$ is defined on $\left.\mathbb{R}^{2} \backslash\{0\}\right)$.

Lemma 1. $M \cong \mathfrak{L}_{\mathbb{R} P^{1}}$ as line bundles over the base space $S^{1} \cong \mathbb{R} P^{1}$.
Proof. Each $s \in[0,1]$ determines the line passing through both the origin and $e^{i \pi s} \in S^{1}$ in \mathbb{R}^{2}, so let us denote the line l_{s}. Let ϕ be a map defined by:

$$
\phi: M \rightarrow \mathfrak{L}_{\mathbb{R} P^{1}} ; \quad \phi([s, t])=\left[l_{s}, t\right]^{\prime}
$$

where the identification [,] in M is given by $(0, t) \sim(1,-t)$ as before, and [, $]^{\prime}$ in $\mathfrak{L}_{\mathbb{R} P^{1}}$ by $\left(l_{s}, t\right) \sim$ $\left(l_{(-s)},-t\right)$. The later identification is deduced from the fact that rotating the line l_{s} by π degree defines a transposition $\left(l_{s}, t\right) \mapsto\left(l_{(-s)},-t\right)$, which must coincide in $\mathfrak{L}_{\mathbb{R} P^{1}}$. To check ϕ being isomorphism is a routine.

Note. It may be confusing at first that $\left(l_{s}, t\right)$ is a different element from $\left(l_{(-s)}, t\right)$, as an element of $\mathfrak{L}_{\mathbb{R} P^{1}}$. This is because the "twistedness" gives rise to the coordinatewise identification may not work as in the ordinal product space $\mathbb{R} P^{1} \times \mathbb{R}$.

Example. tangent bundle of the unit sphere A vector bundle $p: E \rightarrow S^{n}$ where

$$
E=\left\{(x, v) \in S^{n} \times \mathbb{R}^{n+1}: x \perp v\right\}
$$

The local trivialization $h: U_{x} \times \mathbb{R}^{n} \rightarrow p^{-1}\left(U_{x}\right)$ is defined by $h(y, v)=(y, \pi(v))$, where π is the orthogonal projection to $p^{-1}(y)$.

2.2 Sections

Definition. (section of a bundle) A section of a given vector bundle $p: E \rightarrow B$ is a right inverse map $s: B \rightarrow E$ of the projection p, namely such a map with $p \circ s=\mathbb{1}_{B}$

Note. every vector bundle has canonical section called zero section, which assigns zero vector to each point of the base space.

Lemma 2.

$$
M \not \approx S^{1} \times \mathbb{R}
$$

Proof.

$$
M \backslash M_{0} \not \equiv\left(S^{1} \times \mathbb{R}\right) \backslash\left(S^{1} \times 0\right)
$$

References

[1] N. Steenrod. The Topology of Fibre Bundles. Princeton Landmarks in Mathematics and Physics. Princeton University Press, 1999. ISBN: 9780691005485. URL: https://books.google.co.jp/ books?id=m\%5C_wrjoweDTgC.

