Kleisli construction and its properties

stma

June 9, 2023

We introduce Kleisli construction and its basic properties. Its remarkable arrow composition within the hom-set of Kleisli category is translated in the context of computer programs, where the ill-behaviours exhibited by real programs are encoded as the effect of end-functor of associated monad [2]. These illbehaviours include like nontermination, non-determinism or side-effects.

At the end of the article, we conclude that the Kleisli category and its associated adjoints give the universal (initial) object in the category of adjoints over $X \in \mathbf{C a t}$, namely ($X \downarrow \mathbf{A d j}$), whom we don't investigate further for the detail here.

The notions and core ideas are parallel to those of [1] and you may find this article is just a collection of exercise that offer a quick reference to the detailed constructions.
Definition. The Kleisli category X_{T} of a monad $\langle T, \eta, \mu\rangle$ on X is the category whose objects denoted by $x_{T} \in X_{T}$ are those of X and the morphisms denoted by $f^{b}: x_{T} \rightarrow y_{T}$ are every morphisms corresponding to $f: x \rightarrow T y$ in X, together with the specified composition. Hence we have bijections $\operatorname{Ob}(X) \cong O b\left(X_{T}\right)$ and $\operatorname{hom}_{X}(x, T y) \cong \operatorname{hom}_{X_{T}}\left(x_{T}, y_{T}\right)$.

The specified composition is defined by:

$$
g^{b} \circ f^{b}=\left(\mu_{z} \circ T g \circ f\right)^{b}: x_{T} \rightarrow z_{T} .
$$

Lemma 1. X_{T} is a category.
Proof. First we see that $\left(\eta_{y}\right)^{b}$ is the identity on y_{T}, where $\eta_{y}: y \rightarrow T y$ is the component of monad unit at y. For $f: x \rightarrow T y$, we have $\left(\eta_{y}\right)^{b} \circ f^{b}=\left(\left(\mu_{y} \circ T \eta_{y}\right) \circ f\right)^{b}=f^{b}$ whereas it holds that $g^{b} \circ\left(\eta_{y}\right)^{b}=$ $\left(\mu_{z} \circ\left(T g \circ \eta_{y}\right)\right)^{b}=\left(\mu_{z} \circ\left(\eta_{T z} \circ g\right)\right)^{b}=g^{\mathrm{b}}$ for $g: y \rightarrow T z$ (i.e. naturality of η).

Now that it is enough to show that $\mu_{w} \circ T h \circ \mu_{z}=\mu_{w} \circ T \mu_{w} \circ T^{2} h$ holds to see the composition is associative due to the following calculation:

$$
\begin{aligned}
& h^{b} \circ\left(g^{b} \circ f^{b}\right)=\left(\left(\mu_{w} \circ T h \circ \mu_{z}\right) \circ T g \circ f\right)^{b}, \\
& \left(h^{b} \circ g^{b}\right) \circ f^{b}=\left(\left(\mu_{w} \circ T \mu_{w} \circ T^{2} h\right) \circ T g \circ f\right)^{b} .
\end{aligned}
$$

But the equation is canonically induced by the naturality (and the associative law) of $\mu: T^{2} \dot{\rightarrow} T$ over $h: z \rightarrow T w$ as in:

Lemma 2. Provided with a monad $\langle T, \eta, \mu\rangle$ on X, the Kleisli construction $F_{T}: X \rightarrow X_{T}$ given by $(k: x \rightarrow y) \mapsto\left(\left(\eta_{y} \circ k\right)^{b}: x_{T} \rightarrow y_{T}\right)$ is functorial.
Proof. Given a composable morphisms $x \xrightarrow{k} y \xrightarrow{l} z$ on X, we see the following equations hold:

$$
\begin{aligned}
F_{T} l \circ F_{T} k & =\left(\eta_{z} \circ l\right)^{b} \circ\left(\eta_{y} \circ k\right)^{b} \\
& =\left(\left(\mu_{z} \circ T \eta_{z}\right) \circ\left(T l \circ \eta_{y}\right) \circ k\right)^{b} \\
& =\left(\operatorname{id}_{T z} \circ \eta_{z} \circ l \circ k\right)^{b} \\
& =F_{T}(l \circ k) .
\end{aligned}
$$

Lemma 3. Provided with a monad $\langle T, \eta, \mu\rangle$ on X, the construction $G_{T}: X_{T} \rightarrow X$ given by $\left(f^{b}: x_{T} \rightarrow\right.$ $\left.y_{T}\right) \mapsto\left(\mu_{y} \circ T f: T x \rightarrow T y\right)$ is functorial.

Proof. It is enough to show that for any composable morphisms $x_{T} \xrightarrow{f^{b}} y_{T} \xrightarrow{g^{b}} z_{T}$ on X_{T}, the following equation holds:

$$
\mu_{z} \circ T \mu_{z} \circ T^{2} g=\mu_{z} \circ T g \circ \mu_{y}
$$

This is again the canonical consequence of a calculation:

$$
\begin{aligned}
G_{T}\left(g^{b} \circ f^{b}\right) & =\left(\mu_{z} \circ T \mu_{z} \circ T^{2} g\right) \circ T f \\
G_{T}\left(g^{b}\right) \circ G_{T}\left(f^{b}\right) & =\left(\mu_{z} \circ T g \circ \mu_{y}\right) \circ T f,
\end{aligned}
$$

which does hold thanks to the naturality (and the associative law) of μ.
Lemma 4. Provided with a monad $\langle T, \eta, \mu\rangle$ on $X,\left\langle F_{T}, G_{T}\right\rangle: X \rightarrow X_{T}$ defines the adjoints that induce the monad.

Proof. We see that the monad unit η defines the adjoints unit if we observe that η is a natural transformation $I_{X} \rightarrow G_{T} F_{T}$ that gives an universal arrow $x \rightarrow T x$ on $\left(x \downarrow G_{T}\right)$ for each $x \in X$. Precisely for each $y \in X$ and $f: x \rightarrow G_{T} y=T y$, we have the following commutative diagram:

Because $\left(\eta_{x}\right)^{b}$ is the composite identity of X_{T} and $\left(\mu_{y} \circ T f \circ \eta_{x}\right)^{b}=f^{b} \circ\left(\eta_{x}\right)^{b}$, this indeed commutes using the hom-set correspondence $\operatorname{hom}_{X}(x, T y) \cong \operatorname{hom}_{X_{T}}\left(x_{T}, y_{T}\right)$. The naturality holds automatically and hence $\left\langle F_{T}, G_{T}\right\rangle$ is an adjoints.

The counit $\epsilon_{T}: F_{T} G_{T} \rightarrow I_{X_{T}}$ of the adjoints admits the component $(T x)_{T} \rightarrow x_{T}$ for each $x_{T} \in X_{T}$ that corresponds to $T x \rightarrow T x$ in X. We see that $\left(\mathrm{id}_{T x}\right)^{b}$ is the universal arrow on $\left(F_{T} \downarrow x_{T}\right)$ when we examine the universality as we did for η.

The multiplication of the (adjoints-)induced monad is given by $\mu_{T}=G_{T} \epsilon_{T} F_{T}$. We see $\left(\mu_{T}\right)_{x}: T^{2} x \rightarrow$ $T x$ gives the components of μ_{T} for each $x \in X$ by definition of F_{T} and G_{T}.

According to the definition of horizontal composition, namely:

$$
X \xrightarrow[F_{T}]{\stackrel{F_{T}}{\longrightarrow}} X_{T} \xrightarrow[I_{X_{T}}]{\stackrel{F_{T} G_{T}}{\longrightarrow}} X_{T} \xrightarrow[G_{T}]{\stackrel{G_{T}}{\longrightarrow}} X,
$$

we also see that μ_{T} suffices the associative law and right (left) unit law; therefore μ_{T} coincides with μ.
Proposition 1. Provided with a monad $\langle T, \eta, \mu\rangle$ on X together with an arbitrary adjoints $\langle F, G\rangle: X \rightarrow$ A (over X), we have the unique Kleisli comparison functor $L: X_{T} \rightarrow A$ whose "image" $L X_{T}$ is a full subcategory of A. The objects of $L X_{T}$ are comprised of $F x$ for all $x \in X$.

Proof. We denote by $\langle F, G, \eta, \epsilon\rangle: X \rightarrow A$ an adjoint and by $T=\langle G F, \eta, G \epsilon F\rangle$ its defining monad on X. The Kleisli comparison functor is characterized by the properties $G L=G_{T}$ and $L F_{T}=F$ or equivalently by the following commutative diagram (where double arrows are meant to chase respectively):

Chasing from the bottom right corner, the object function of L must be $L x_{T}=F x$.
Chasing from the top right corner, a possible candidate for the morphism function is given by $L\left(x_{T} \xrightarrow{f^{b}}\right.$ $\left.y_{T}\right)=(\epsilon F)_{y} \circ F f$ since we have $G L f^{b}=G_{T} f^{b}=\mu_{y} \circ T f=(G \epsilon F)_{y} \circ G F f=G\left((\epsilon F)_{y} \circ F f\right)$.

To confirm this is a functor, we need to show that L respect a composition, namely

$$
\begin{equation*}
L\left(g^{b} \circ f^{b}\right)=L\left(g^{b}\right) \circ L\left(f^{b}\right), \quad \forall\left(x_{T} \xrightarrow{f^{b}} y_{T} \xrightarrow{g^{b}} z_{T}\right) \in \operatorname{Mor}\left(X_{T}\right) . \tag{1}
\end{equation*}
$$

By definition of L and the Kleisli composition, this is done by showing the following diagram commute:

By seeing $F \mu$ as a horizontal composition of the natural transformations, we have:

$$
F \mu_{z}=(F \mu)_{z}=(F G \epsilon F)_{z}=F G(\epsilon F)_{z}
$$

Furthermore, we want to exploit the naturality of ϵF to admit the commutativity where the square in the above diagram is seen to be a 2-morphism from the component $(\epsilon F)_{y}$ over y to $(\epsilon F)_{T z}$ over $T z$.

Hence we are done if we show that the following extended diagram commutes:

This indeed commutes by definition of $\epsilon \epsilon F$.
Finally we'll see the uniqueness of L from the diagram below:

The left diagram commutes by the properties defining L. On the right diagram, horizontal arrows are bijections by given adjoints and hence L is unique up to isomorphism.

By construction, the image $L X_{T}$ is a full subcategory $F_{X} \subset A$ whose objects are comprised of $F x$ for each $x \in X$.

References

[1] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5. New York: Springer-Verlag, 1971, pp. ix +262 .
[2] Eugenio Moggi. "Notions of computation and monads". In: Information and Computation 93.1 (1991). Selections from 1989 IEEE Symposium on Logic in Computer Science, pp. 55-92. ISSN: 0890-5401. DOI: https://doi. org/10.1016/0890-5401(91) 90052-4. URL: https://www. sciencedirect.com/science/article/pii/0890540191900524.

