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We introduce Kleisli construction and its basic properties. Its remarkable arrow composition within
the hom-set of Kleisli category is translated in the context of computer programs, where the ill-behaviours
exhibited by real programs are encoded as the effect of end-functor of associated monad [2]. These ill-
behaviours include like nontermination, non-determinism or side-effects.

At the end of the article, we conclude that the Kleisli category and its associated adjoints give the
universal (initial) object in the category of adjoints over X € Cat, namely (X | Adj), whom we don’t
investigate further for the detail here.

The notions and core ideas are parallel to those of [1] and you may find this article is just a collection
of exercise that offer a quick reference to the detailed constructions.

Definition. The Kleisli category Xt of a monad (T, n, u) on X is the category whose objects denoted by
xp € X are those of X and the morphisms denoted by f° : 27 — yr are every morphisms corresponding
to f:ax — Ty in X, together with the specified composition. Hence we have bijections Ob(X) = Ob(Xr)
and homy (z, Ty) = homx..(z1,yr).
The specified composition is defined by:
¢ o= (,uZngof)b:xT—>zT.
Lemma 1. X7 is a category.

Proof. First we see that (77y)b is the identity on yr, where 7, : y — Ty is the component of monad unit
at y. For f:xz — Ty, we have (ny)" oft = ((y 0 T'my) © f)> = f° whereas it holds that ¢° o (77y)b =
(pz 0 (Tgomy)) = (=0 (nr=0g))” = ¢ for g :y — Tz (i.e. naturality of n).

Now that it is enough to show that ft,, o Th o i, = fty © Tt © T?h holds to see the composition is
associative due to the following calculation:

hbo(gbofb):((uonhouz)ngof)b,
(0 g") o f* = ((paw © Ty o T*h) 0 Tg 0 f)".

But the equation is canonically induced by the naturality (and the associative law) of pu : T? = T
over h: z — Tw as in:

T2y = 5 Ty
Tth lTh
T3w SN T?2w 2 Tw
O

Lemma 2. Provided with a monad (T, n,u) on X, the Kleisli construction Fr : X — Xr given by
(k:z—y) > ((ny, 0k)* : xp — yr) is functorial.

Proof. Given a composable morphisms x LN Y Lron X , we see the following equations hold:

Frlo Frk = (n.01)" o (1, o k)’

= ((nz0Tnz) o (Tlony)o k')b
= (idp, on, ol o k)’
= FT(Z o k)



Lemma 3. Provided with a monad (T, 7, 1) on X, the construction G : X7 — X given by (f° : 27 —
yr) = (uy o Tf : Tx — Ty) is functorial.

b b
Proof. 1t is enough to show that for any composable morphisms xp f—) yr 2y 2p on Xo, the following
equation holds:

piz0Tpz 0 T?g = pz o Tgo .

This is again the canonical consequence of a calculation:

Gr(g’ 0 f°) = (o 0 Tp. 0 T?g) o T'f
Gr(g’) o Gr(f’) = (uz 0 Tgo ) o TF,

which does hold thanks to the naturality (and the associative law) of p. O

Lemma 4. Provided with a monad (T,n, u) on X, (Fr,Gr) : X — Xr defines the adjoints that induce
the monad.

Proof. We see that the monad unit 7 defines the adjoints unit if we observe that 7 is a natural transfor-
mation Ix — GrFpr that gives an universal arrow z — Tz on (z | Gr) for each z € X. Precisely for
each y € X and f: z — Gpy = Ty, we have the following commutative diagram:

Ty

% 3G fP=pyoTf

:ET>TZ‘.

Because (7,.)” is the composite identity of X7 and (uyoTfo )" = f” o (n,)’, this indeed commutes
using the hom-set correspondence homx (z,Ty) = homy, (z7,yr). The naturality holds automatically
and hence (Fp, Gr) is an adjoints.

The counit e : FrGr — Ix, of the adjoints admits the component (T'z)r — a7 for each zr € X
that corresponds to Tx — T in X. We see that (idz,)” is the universal arrow on (Fr | 27) when we
examine the universality as we did for 7.

The multiplication of the (adjoints-)induced monad is given by ur = GrerFr. We see (ur), : T?x —
Tx gives the components of ur for each x € X by definition of Fr and Gr.

According to the definition of horizontal composition, namely:

FT FTGT GT
X [¢ XT [¢ XT [¢ X,
FT IXT GT

we also see that pr suffices the associative law and right (left) unit law; therefore pr coincides with
- O

Proposition 1. Provided with a monad (T, 7, u) on X together with an arbitrary adjoints (F,G) : X —
A (over X), we have the unique Kleisli comparison functor L : X7 — A whose ”image” LX7p is a full
subcategory of A. The objects of LXp are comprised of Fz for all x € X.

Proof. We denote by (F,G,n,¢) : X — A an adjoint and by T = (GF,n, GeF) its defining monad on X.
The Kleisli comparison functor is characterized by the properties GL = G and LFr = F or equivalently
by the following commutative diagram (where double arrows are meant to chase respectively):

A b Xr
Al wer
X —X

Chasing from the bottom right corner, the object function of L must be Lxp = Fx.

b
Chasing from the top right corner, a possible candidate for the morphism function is given by L(xr EAR
yr) = (eF), o F f since we have GLf® = Grf® = py o Tf = (GeF), o GFf = G((eF), o Ff).
To confirm this is a functor, we need to show that L respect a composition, namely



b b
Lg" o ') = L(g") o L(f"),  V(ar L5 yr L 2r) € Mor(Xr). (1)
By definition of L and the Kleisli composition, this is done by showing the following diagram commute:

Ff FTg

FT FT?z

Y
l(eF)y iFMz

Fzx

By seeing F'uu as a horizontal composition of the natural transformations, we have:

Fu, = (Fu), = (FGeF), = FG(eF),

Furthermore, we want to exploit the naturality of eF' to admit the commutativity where the square
in the above diagram is seen to be a 2-morphism from the component (eF'), over y to (eF)r, over Tz.
Hence we are done if we show that the following extended diagram commutes:

FTQZ(EFﬂ;z FTz
Fuz:(FGeF)ZJ( J{(GF)Z

FTz — Fz
(eF):

This indeed commutes by definition of eeF.
Finally we’ll see the uniqueness of L from the diagram below:

A-—S . x A(Fz, Fy) A(Fz, Lyr) —2— X(z,GLyr)
2 a H

Gr T T
xXr 40 x A xp Xr(xr,yr) == Xr(Frz,yr) o, X(x,Gryr)

The left diagram commutes by the properties defining L. On the right diagram, horizontal arrows
are bijections by given adjoints and hence L is unique up to isomorphism.
By construction, the image L X7 is a full subcategory F'x C A whose objects are comprised of Fx
for each z € X.
O
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