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We introduce Kleisli construction and its basic properties. Its remarkable arrow composition within
the hom-set of Kleisli category is translated in the context of computer programs, where the ill-behaviours
exhibited by real programs are encoded as the effect of end-functor of associated monad [2]. These ill-
behaviours include like nontermination, non-determinism or side-effects.

At the end of the article, we conclude that the Kleisli category and its associated adjoints give the
universal (initial) object in the category of adjoints over X ∈ Cat, namely (X ↓ Adj), whom we don’t
investigate further for the detail here.

The notions and core ideas are parallel to those of [1] and you may find this article is just a collection
of exercise that offer a quick reference to the detailed constructions.

Definition. The Kleisli category XT of a monad ⟨T, η, µ⟩ on X is the category whose objects denoted by
xT ∈ XT are those of X and the morphisms denoted by f ♭ : xT → yT are every morphisms corresponding
to f : x → Ty in X, together with the specified composition. Hence we have bijections Ob(X) ∼= Ob(XT )
and homX(x, Ty) ∼= homXT

(xT , yT ).
The specified composition is defined by:

g♭ ◦ f ♭ = (µz ◦ Tg ◦ f)♭ : xT → zT .

Lemma 1. XT is a category.

Proof. First we see that (ηy)
♭ is the identity on yT , where ηy : y → Ty is the component of monad unit

at y. For f : x → Ty, we have (ηy)
♭ ◦ f ♭ = ((µy ◦ Tηy) ◦ f)♭ = f ♭ whereas it holds that g♭ ◦ (ηy)

♭ =
(µz ◦ (Tg ◦ ηy))♭ = (µz ◦ (ηTz ◦ g))♭ = g♭ for g : y → Tz (i.e. naturality of η).

Now that it is enough to show that µw ◦ Th ◦ µz = µw ◦ Tµw ◦ T 2h holds to see the composition is
associative due to the following calculation:

h♭ ◦ (g♭ ◦ f ♭) = ((µw ◦ Th ◦ µz) ◦ Tg ◦ f)♭,
(h♭ ◦ g♭) ◦ f ♭ = ((µw ◦ Tµw ◦ T 2h) ◦ Tg ◦ f)♭.

But the equation is canonically induced by the naturality (and the associative law) of µ : T 2 ·−→ T
over h : z → Tw as in:

T 2z Tz

T 3w T 2w Tw

T 2h

µz

Th

Tµw µw

Lemma 2. Provided with a monad ⟨T, η, µ⟩ on X, the Kleisli construction FT : X → XT given by
(k : x → y) 7→ ((ηy ◦ k)♭ : xT → yT ) is functorial.

Proof. Given a composable morphisms x
k−→ y

l−→ z on X, we see the following equations hold:

FT l ◦ FT k = (ηz ◦ l)♭ ◦ (ηy ◦ k)♭

= ((µz ◦ Tηz) ◦ (T l ◦ ηy) ◦ k)♭

= (idTz ◦ ηz ◦ l ◦ k)♭

= FT (l ◦ k).
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Lemma 3. Provided with a monad ⟨T, η, µ⟩ on X, the construction GT : XT → X given by (f ♭ : xT →
yT ) 7→ (µy ◦ Tf : Tx → Ty) is functorial.

Proof. It is enough to show that for any composable morphisms xT
f♭

−→ yT
g♭

−→ zT on XT , the following
equation holds:

µz ◦ Tµz ◦ T 2g = µz ◦ Tg ◦ µy.

This is again the canonical consequence of a calculation:

GT (g
♭ ◦ f ♭) = (µz ◦ Tµz ◦ T 2g) ◦ Tf

GT (g
♭) ◦GT (f

♭) = (µz ◦ Tg ◦ µy) ◦ Tf,

which does hold thanks to the naturality (and the associative law) of µ.

Lemma 4. Provided with a monad ⟨T, η, µ⟩ on X, ⟨FT , GT ⟩ : X → XT defines the adjoints that induce
the monad.

Proof. We see that the monad unit η defines the adjoints unit if we observe that η is a natural transfor-
mation IX

·−→ GTFT that gives an universal arrow x → Tx on (x ↓ GT ) for each x ∈ X. Precisely for
each y ∈ X and f : x → GT y = Ty, we have the following commutative diagram:

Ty

x Tx.

f

ηx

∃!GT f♭=µy◦Tf

Because (ηx)
♭ is the composite identity of XT and (µy ◦ Tf ◦ ηx)♭ = f ♭ ◦ (ηx)♭, this indeed commutes

using the hom-set correspondence homX(x, Ty) ∼= homXT
(xT , yT ). The naturality holds automatically

and hence ⟨FT , GT ⟩ is an adjoints.

The counit ϵT : FTGT
·−→ IXT

of the adjoints admits the component (Tx)T → xT for each xT ∈ XT

that corresponds to Tx → Tx in X. We see that (idTx)
♭ is the universal arrow on (FT ↓ xT ) when we

examine the universality as we did for η.
The multiplication of the (adjoints-)induced monad is given by µT = GT ϵTFT . We see (µT )x : T 2x →

Tx gives the components of µT for each x ∈ X by definition of FT and GT .
According to the definition of horizontal composition, namely:

X XT XT X,
FT

FT

FTGT

IXT

GT

GT

we also see that µT suffices the associative law and right (left) unit law; therefore µT coincides with
µ.

Proposition 1. Provided with a monad ⟨T, η, µ⟩ on X together with an arbitrary adjoints ⟨F,G⟩ : X →
A (over X), we have the unique Kleisli comparison functor L : XT → A whose ”image” LXT is a full
subcategory of A. The objects of LXT are comprised of Fx for all x ∈ X.

Proof. We denote by ⟨F,G, η, ϵ⟩ : X → A an adjoint and by T = ⟨GF, η,GϵF ⟩ its defining monad on X.
The Kleisli comparison functor is characterized by the properties GL = GT and LFT = F or equivalently
by the following commutative diagram (where double arrows are meant to chase respectively):

A XT

X X

G

L

GTF FT

Chasing from the bottom right corner, the object function of L must be LxT = Fx.

Chasing from the top right corner, a possible candidate for the morphism function is given by L(xT
fb

−→
yT ) = (ϵF )y ◦ Ff since we have GLf b = GT f

b = µy ◦ Tf = (GϵF )y ◦GFf = G((ϵF )y ◦ Ff).
To confirm this is a functor, we need to show that L respect a composition, namely
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L(gb ◦ f b) = L(gb) ◦ L(f b), ∀(xT
fb

−→ yT
gb

−→ zT ) ∈ Mor(XT ). (1)

By definition of L and theKleisli composition, this is done by showing the following diagram commute:

Fx FTy FT 2z

Fy FTz Fz.

Ff

(ϵF )y

FTg

Fµz

Fg (ϵF )z

By seeing Fµ as a horizontal composition of the natural transformations, we have:

Fµz = (Fµ)z = (FGϵF )z = FG(ϵF )z

Furthermore, we want to exploit the naturality of ϵF to admit the commutativity where the square
in the above diagram is seen to be a 2-morphism from the component (ϵF )y over y to (ϵF )Tz over Tz.

Hence we are done if we show that the following extended diagram commutes:

FT 2z FTz

FTz Fz

Fµz=(FGϵF )z

(ϵFGF )z

(ϵF )z

(ϵF )z

This indeed commutes by definition of ϵϵF .
Finally we’ll see the uniqueness of L from the diagram below:

A X A A(Fx, Fy) A(Fx,LyT ) X(x,GLyT )

XT X XT XT (xT , yT ) XT (FTx, yT ) X(x,GT yT )

G F ϕ

L

GT FT

L L

ϕT

The left diagram commutes by the properties defining L. On the right diagram, horizontal arrows
are bijections by given adjoints and hence L is unique up to isomorphism.

By construction, the image LXT is a full subcategory FX ⊂ A whose objects are comprised of Fx
for each x ∈ X.
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