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On a context of data modeling, we sometimes run into a problem of (vertical) schema decomposition
where the future modification is expected either not to affect or at least respect for the existent data.

In a classic form, if the ”contribution” of the schema modification is algebraically calculable with
respect to the pre-existent schema; in other words, if there exists a surjective homomorphism of k-
algebra ν : k[t1, . . . , tm] → k[t′1, . . . , t

′
n] over a field k, the problem is canonically solved by giving

the transformation t 7→ Et(ν), where we denote by t and t′ the variables to be assigned the value
of corresponding schema attributes and E evaluates the data value ⟨t, ν⟩ → ν1(t), . . . , νn(t) at t =
(t1, . . . , tm). Without loss of generality, some minor modification can be applied; for instance the division
by a certain attribute is realized by the localization, i.e. an addition of fractional generator to t.

Within a real business system, however, we rarely find such rigid algebraic relation among the data
attributes and hence the previous argument is barely applicable.

To think of a way of broadening the scope of domain (to unstructured Set), it may sound convincing
to study the compatible conditions of evaluation map on each attribute. Simply put, we consider the
following situation.

Proposition 1. For finite sets X1, X2, we are given a function h : X1×X2 → V that takes value on V (a
discrete subset of R). When and under what conditions there exist the unique pair of maps hi : Xi → Vi

on each factor that recover the value of h, namely;

V1 V V2

X1 X1 ×X2 X2.

∃!h1

p1

h

p2

∃!h2

This is precisely the pushout of Xi
pi←− X1×X2

h−→ V that gives the universal way of factoring out the
contribution of hi, which is not really practical in terms of ”recovering” the value of h.

To make it somewhat practical, an obvious assumption would be to assign fixed points for each Xi;
precisely, when Xi are pointed (in a category endowed with the terminal object ∗), some chosen fixed
(or default) values ∗ → Xi → V induce the desired pair of maps that commutes the following diagram:

V V V

X1 X1 ×X2 X2.
i1

h◦i1 h

i2

h◦i2

Nevertheless, it is often improper or even impossible for some business requirements to give per-
attribute (default) evaluation. This arises for instance when the value is determined by a tuple of
attributes, not by single.

This argument is similar when we require Xi belong to abelian category where a product is isomorphic
to its coproduct [1].

Then, what would be a reasonable definition of ”the recovery of the value of h”?
It may be happy to hear that there is a map V1×V2 → V that is compatible with the diagram in the

above proposition, in which we immediately see that V is isomorphic to V1 × V2 and hence h = h1 × h2;
whereas it may imply some emergence of non-trivial classification (of the recovery) when we see the
existence of the compatible map from direct product as ”the most trivial”.
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In this article, we save for later the further detail of what would be a nice ”fibration” E → B along
with a map V → B to induce a ”recovery” E∗V → V of h : X1 ×X2 → V , which may give an idea of
studying the proposition.
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