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Introduction

In what follows, we restrict the arguments to small (i.e. internal to Set) categories.

Definition. The simplex category∆ is a category whose objects are all finite ordinal numbers denoted
by [n] and the morphisms are all the weakly monotone functions between the ordinals.

Definition. A simplicial object (in C) is a functor ∆op → C for a category C. Dually, a cosimplicial
object (in C) is a functor ∆ → C.

Given a cosimplicial object ∆C in a (cocomplete) category C, we have a pair of functors:

Set∆
op

C,
|-|

N

where we call |-| the realization and N the nerve.
The realization is an operation to build up a certain object along with the given building block

according to a combinatorial design. This came originally of a geometric construction where the building
block is standard (affine) simplex and the design is abstract simplicial complex. Conversely — on some
account, the nerve operation introduces the given object combinatorics and dimensionality that are
responsible for classifying the object.

Throughout the text, we focus on introducing the basics such as definitions and canonical examples
while a circuitousness is carefully avoided. At the end, we’ll show that the realization is a left adjoint to
the nerve operation, owning to the fact that a presheaf on a small category is expressed as the colimit
of representable presheaves.

Realization

Definition. Let C be a cocomplete category. For each simplicial set S : ∆op → Set and cosimplicial
object ∆C in C, there is a functorial operation called the tensor product (of functors):

⊗ : Set∆
op

× C∆ → C,

defined by S⊗∆C =
∫ n∈∆

Sn ·∆Cn, where
∫ n∈∆

is the coend and Sn ·∆Cn is the copower ⊔σ∈Sn∆Cn

in C.

Lemma 1. The tensor product ⟨S,∆C⟩ 7→ S ⊗∆C of functors is functorial.

Proof. We are enough to show that for each natural transformations τ : S
·−→ S′ and ν : ∆C

·−→ ∆′C , the
following canonical diagram commutes:

∫ n∈∆
(Sn) · (∆Cn)

∫ n∈∆
(S′n) · (∆Cn)

∫ n∈∆
(Sn) · (∆C

′
n)

∫ n∈∆
(S′n) · (∆C

′
n),

1⊗ν

τ⊗1

1⊗ν

τ⊗1

where τ ⊗ 1 and 1 ⊗ ν are morphisms in C induced by the corresponding universal cowedges. To write
these down, we see that for each (weakly) monotone function [n] → [m], there are universal cowedges:
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(Sn) · (∆Cn) (S′n) · (∆Cn) (S′n) · (∆Cn) (S′n) · (∆C
′
n)

∫ n∈∆
(Sn) · (∆Cn)

∫ n∈∆
(S′n) · (∆Cn)

∫ n∈∆
(S′n) · (∆Cn)

∫ n∈∆
(S′n) · (∆C

′
n)

(Sm) · (∆Cm) (S′m) · (∆Cm) (S′m) · (∆Cm) (S′m) · (∆C
′
m).

τn·∆Cn S′
n·νn

∃!τ⊗1 ∃!1⊗ν

τm·∆Cm S′
m·νm

Since the copower · : Set× C → C induced for each n ∈ ∆ is functorial, the universality shows that
the first diagram commutes.

Definition. Given a cosimplicial object ∆C in a cocomplete category C, a functor |-| defined by

|-| = (-)⊗∆C : Set∆
op

→ C

is called the realization (with respect to ∆C).

Note. There is another (but equivalent) interpretation of realization as the left Kan extension LanY ∆∆C

of ∆C along the Yoneda embedding Y ∆ : ∆ → Set∆
op

.

Example. (free R-module) For each X ∈ Set, the assignment [n] 7→ Xn of the direct (i.e. Cartesian)
product defines a simplicial set X(−) : ∆op → Set equipped with the obvious face maps and degenerate
maps such as ∂1⟨x0, x1⟩ = x0 and s1⟨x0, x1⟩ = ⟨x0, x1, x1⟩, respectively. Similarly for each ring R, the
assignment [n] 7→ R⊕n of the free R-module gives the covariant functor R(−) : ∆ → ModR, where the
coface maps and codegenerate maps look like δ1⟨a0, a1⟩ = ⟨a0, 0, a1⟩ and σ1⟨a0, a1, a2⟩ = ⟨a0, a1 + a2⟩,
respectively.

We claim that there is an isomorphism ι :

∫ n

Xn ·Rn →
⊕

x∈X Rx of R-module from the realization

|X(−)| with respect to R(−) to the free R-module generated by X.
To see this, note that the R-module homomorphisms λn : Xn·Rn →

⊕
x∈X Rx that sends ⟨a0, . . . , an−1⟩x

to
∑

i<n aixi for each n ∈ ∆ and x = ⟨x0, . . . , xn−1⟩ ∈ Xn is (a component of) cowedge, which fits into
the diagram:

Xn ·Rm Xm ·Rm

Xn ·Rn

∫ n
Xn ·Rn

⊕
x∈X Rx,

(Xn·Rf )∗

(Xf ·Rm)∗

λm

λn

ι

where f : [m] → [n] is an arbitrary morphism of ∆.
λ being a cowedge encodes an expression of each element of

⊕
x∈X Rx in terms of the linear com-

bination with the coefficients in R, namely ∀v ∈
⊕

x∈X Rx,∃ai ∈ R, xi ∈ X s.t. v =
∑

i aixi. This
can be seen explicitly by chasing the cowedge for some structure maps. For example, let f : [2] → [4]
be a coface defined by [0, 1] 7→ [0, 1̂, 2, 3̂], assigning 0 to 0 and 1 to 2 (i.e. m=2, n=4). An element
⟨a0, a1⟩[x0...x3] ∈ X4 ·R2 is passed along the diagram in the following way:

⟨a0, a1⟩[x0...x3] ⟨a0, a1⟩[x0x2]

⟨a0, 0, a1, 0⟩[x0...x3] a0x0 + a1x2.

For the case of another structure map is similar. When f : [4] → [2] is a codegenerate map [0, 1, 2, 3] 7→
[0, 1] that assigns 0,1 to 0 and 2,3 to 1 (i.e. m=4, n=2), the corresponding element chasing is given by:

⟨a0, . . . , a3⟩[x0x1] ⟨a0, . . . , a3⟩[x0x0x1x1]

⟨a0 + a1, a2 + a3⟩[x0x1] (a0 + a1)x0 + (a2 + a3)x1.

2



These observations show that the number of generating element is reduced at most the number of
coefficients in order to represent an element in the free module, and on the other way around; namely
the number of coefficients is reduced to at most the number of generating element in order to represent
the element.

ι is shown to be an isomorphism by induction of cardinal of X.

Example. (geometric realization) Let ∆Top : ∆ → Top be a cosimplicial object in Top that assigns
the standard (affine) n-simplex for each [n] ∈ ∆. The coface and codegenerate maps are obvious one.

The realization |-| : Set∆
op

→ Top with respect to ∆Top is called geometric realization.

Note. Consider a simplicial set S that is realized to singleton. When n > m, each codegenerate map
[n + 1] → [m + 1] induces degenerate map Sm → Sn as a distinct morphism in Set if Sm ̸= ∅. By
assumption, we must have S0 ·∆0 = {e0} ̸= ∅ hence we have non-empty sets of higher simplices. The
resulting simplicial set is given as following (edi is a degenerate simplex that is to be collapse to lower
dimensional simplex): Despite that the realization turns out to be one point space, the identification

Table 1: sets of k-simplices for the simplicial set structure on the singleton space
S0 S1 S2 S3 . . .

e0 ed1 ed2 ed3 . . .

procedures should be taken carefully. If we are not taking degenerate maps into account, we have an
infinite sequence of dunce-hat-like spaces glued all together that is grown in complexity as n increases.

The minimal simplicial set structure on S1 is in the similar manner except that non-degenerate
operation glues the endpoints of 1-simplex to the only 0-simplex. As a delta set, the sets of simplices
are comprised of one 0-simplex and one 1-simplex, whereas a simplicial set is given in the following (edi
indicates again a degenerate simplex): Only difference from the singleton is that e1 is added to X1 and

Table 2: sets of k-simplices for the simplicial set structure on S1

X0 X1 X2 X3 . . .

e0 e1, e
d
1 ed2 ed3 . . .

this is necessary for a distinct non-collapsing 1-simplex to build up the interior of a circle. We can see
the degenerate operation collapsing ed1 only as prescribed way in dimension one:

|e0 ·e0 ·e0

|e1 |ed1
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Table 3: structure maps for a simplicial set
n Non-degenerate Degenerate

1

X0 ·∆0

X1 ·∆0 |X|

X1 ·∆1

X0 ·∆0

X0 ·∆1 |X|

X1 ·∆1

2

X1 ·∆1

X2 ·∆1 |X|

X2 ·∆2

X1 ·∆1

X1 ·∆2 |X|

X2 ·∆2

. . . . . . . . .

Nerve

Definition. Given a cosimplicial object ∆C in a category C, a functor defined by the composite:

N = C(∆C ,−) : C → Set∆
op

of ∆C followed by the (contravariant) Yoneda embedding is called nerve (with respect to ∆C).

Example. (Cat nerve) Let Cat be a category of small categories together with the morphisms of all
the functors.

Because a finite totally ordered set can be interpreted as a (skeletal thin) category (i.e. as a full
sub-category ∆ ∋ [n] 7→ n ∈ Cat), we can take a cosimplicial object ∆Cat that assigns a finite totally
ordered set with (n + 1)-elements n ∈ Cat to each ordinal [n] ∈ ∆. For an arbitrary category D, each
element of Cat(∆Catn, D) specifies a sequence of n-composable morphisms

∗0
f1−→ ∗1

f2−→ . . .
fn−1−−−→ ∗n−1

fn−→ ∗n

in D.
The structure maps are given as follows:

d0⟨f1, . . . , fn⟩ = ⟨f2, . . . , fn⟩, dn⟨f1, . . . , fn⟩ = ⟨f1, . . . , fn−1⟩
di⟨f1, . . . , fn⟩ = ⟨. . . , fi+1 ◦ fi, . . .⟩ (0 < i < n),

s0⟨f1, . . . , fn⟩ = ⟨id∗0 , f1, . . . , fn⟩, sn⟨f1, . . . , fn⟩ = ⟨f1, . . . , fn, id∗n⟩
si⟨f1, . . . , fn⟩ = ⟨f1, . . . , fi, id∗i , fi+1, . . . , fn⟩ (0 < i < n).

Example. (group nerve) Since a group is interpreted as a category of single object equipped with all
the end functions having inverses as the morphisms, we can think of group nerve in terms of Cat nerve.
The properties of nerve are often well understood by the composition of realization. In fact, |NG| is
known as a K(G, 1) space for arbitrary group G, i.e. the class of spaces whose fundamental group is
isomorphic to G.

Let G be an infinite cyclic group (hence we write additively by virtue of G ∼= Z). The zero skeleton
|NG0| is a point because the group has single object ∗ in Cat. The one skeleton |NG1| is a bouquet of
infinite circles where each circle corresponds to an integer while 0 is in the image of s0⟨∗⟩ = ⟨id∗⟩ = ⟨+0⟩
hence degenerate. The two skeleton |NG2| is realized by tarping all the triples of circles labelled n, m
and n+m (duplicate integers allowed) with a standard 2-simplex according to the labels. For example
a two simplex represented by ⟨1, 1⟩ is realized by glueing 2 edges to the circle labelled 1 and the 1 edge
to the circle labelled 2, and so on. The higher skeletons are similar but the complexity as a space grows
rapidly.
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When G = Z2, |NG0| = ∗ and |NG1| = S1. This is because every circles labelled with even
numbers degenerate to the only vertex and those with odd numbers are identified with single circle.
The only non-degenerate simplex in NG2 is of the form ⟨1, 1⟩ that is realized by collapsing an edge of
standard 2-simplex to the point and the rest of two edges are glued to the only circle with the deduced
direction, in opposite. We conclude that |NG2| = RP 2. Similar arguments show that |NGn| = RPn

and |NG| = RP∞.

Lemma 2. Let J be a small category. Any presheaf on J is canonically the colimit of representable
presheaves.

Proof. Let F : Jop → Set be an arbitrary presheaf on J . For each j ∈ J , we denote by hj = hom(−, j) ∈
SetJ

op

the (representable) contravariant hom-functor. Let RepF be a full subcategory of (SetJ
op

↓ F )

where the objects are all the natural transformations (from the representable presheaves) hj ·−→ F and

the morphisms are the induced natural transformations hγ
∗ : h

j ·−→ hk for each (γ : j → k) ∈ J such that
the following diagram commutes:

hj hk

F .

hγ
∗

We denote the restricted projection of comma category by ϕ : RepF → SetJ
op

, namely ϕ(hj → F ) = hj .
By definition, each object c ∈ RepF corresponds (not necessarily uniquely) to a (component of) cocone

ϕ(c)
·−→ F to F which yields the unique morphism of presheaf κ : lim−→

hj→F

hj ·−→ F since the category of

presheaves is cocomplete.
We claim that κ is a natural isomorphism.
First of all, κ is natural in the sense that each (γ : k → j) ∈ J yields the commutative square of

universal cocones:

Fj Fk

lim−→
hj→F

hjj lim−→
hj→F

hjk

ϕ(c)j ϕ(c)k.

(Fγ)∗

κj κk

cj

h∗
γ

ck

For each j ∈ J and x ∈ Fj, we can find some (c : hj ·−→ F ) ∈ RepF such that cj : ϕ(c)j → Fj sends 1j
to x hence κ is surjective on each component.

On the other hands, assuming cj(λ) = c′j(λ
′) for some λ ∈ ϕ(c)j and λ′ ∈ ϕ(c′)j, then it is immediate

to see that λ = λ′ in lim−→
hj→F

hjj.

lim−→
hj→F

hjj Fj

ϕ(c)j ϕ(c′)j.

κj

cj

hγ
∗

c′j

Note. We denoted by F ≃ lim−→
hj→F

hj a presheaf F expressed as the colimit of representable presheaves

on RepF despite that F ≃ lim−→
c∈RepF

ϕ(c) may be rigorously expected notation.

Lemma 3. Let J be a small category. Given a copresheaf JC : J → C that takes value in cocomplete
category C, a representable presheaf hj ∈ SetJ

op

is canonically realized to JC(j) in a sense that there is
an isomorphism in C:

|hj | =
∫ k∈J

hjk · JC(k) → JC(j).

This can be thought of as a variation of so called co-Yoneda lemma.
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Proof. For any Y ∈ C and j ∈ J , the following equation holds:

C(|hj |, Y ) = C(
∫ k∈J

hjk · JC(k), Y )
≃

∫
k∈J C(hjk · JC(k), Y ) ∵ a coend property as a colimit

≃
∫
k∈J Set(hjk,C(JC(k), Y )) ∵ the adjoint of copower

≃ Set(hj , C(JC , Y )) ∵ by definition of end
≃ C(JC(j), Y ). ∵ Yoneda lemma

Then |hj | ∼= JC(j) follows from argument involved with Yoneda embedding— C(|hj |, -) and C(JC(j), -)
are isomorphic as representable copresheaves on C in the sense that there is a natural isomorphism τ
between them to which the unique isomorphism corresponds.

C |hj | JC(j)

SetC C(|hj |, -) C(JC(j), -)

y

∃!

∃!

τ

τ−1

Proposition 1. Let C be a cocomplete category. When a cosimplicial object ∆C : ∆ → C is given,
⟨|-|,N⟩ : Set∆

op

→ C is an adjoint pair.

Proof.
C(|S|, Y ) ≃ C(| lim−→

hn→S

hn|, Y ) ∵ Lemma 2

≃ C( lim−→
hn→S

|hn|, Y ) ∵ a property of coend as colimit

≃ lim←−
hn→S

C(|hn|, Y ) ∵ hom-colimit exchange

≃ lim←−
hn→S

C(∆Cn, Y ) ∵ Lemma 3

= lim←−
hn→S

N (Y )n

≃ lim←−
hn→S

Set∆
op

(hn,N (Y )) ∵ Yoneda lemma

≃ Set∆
op

(S,N (Y )) ∵ Lemma 2
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