Vector Bundles 2

stma

December 1, 2023

2 Vector Bundle

2.2 Sections

Proposition 1. an n-dimensional bundle $p: E \rightarrow B$ is isomorphic to the trivial bundle iff it has n sections s_{1}, \ldots, s_{n} such that the vectors $s_{1}(b), \ldots, s_{n}(b)$ are linearly independent in each fiber $p^{-1}(b)$.

Proof. When $f: B \times \mathbb{R}^{n} \rightarrow E$ is an isomorphism, we can define such sections by $s_{i}(b)=f\left(b, v_{i}\right)$ for each i, where $v_{i} \in \mathbb{R}^{n}$ is a linearly independent i-th n-vector. The bundle isomorphism takes linearly independent sections to linearly independent sections.

On the other hand, when $\left\{s_{i}\right\}_{i}$ is such a series of sections, a bundle isomorphism can be defined by:

$$
f: B \times \mathbb{R}^{n} \rightarrow E ; \quad\left(b, t_{1}, \ldots, t_{n}\right) \mapsto \sum_{i} t_{i} s_{i}(b)
$$

This is an isomorphism on each fiber $p^{-1}(b)$ and furthermore, a homeomorphism. This is because its composition with a trivialization $h^{-1}: p^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$ is continuous by definition of f and the topology on E , for point $(b, t) \in U \times \mathbb{R}^{n}$, there exists a transition function $g: U \rightarrow G L_{n}(\mathbb{R})$ such that $h^{-1}(f(b, t))=(b, g(b) \cdot t)$ where $g(b)$ continuously depends on $s_{i}(b)$, hence on b.

Its inverse $(b, s) \mapsto\left(b, g(b)^{-1} \cdot s\right)$ is given by inverted determinant of $g(b)$ times its adjugate, which is again continuous.

Note. In a literature such as [1], the proof is broken into two parts; the later employs a lemma asserting that fiber-wise isomorphic continuous function is homeomorphism, hence bundle isomorphism. Our vector bundle explicitly includes coordinate transformation as its definition, resulting that we know the composite function $h^{-1} \circ f$ is given by a regular matrix that continuously depends on the first coordinate.

Example. The tangent bundle $T S^{1} \rightarrow S^{1}$ is trivial since it admits non-vanishing global section

$$
\left(x_{1}, x_{2}\right) \mapsto\left(-x_{2}, x_{1}\right) .
$$

Example. To see non-triviality of the tangent bundle over S^{2}, consult Hairy Ball Theorem.

2.3 Whitney Sum

Given two vector bundles $p_{i}: E_{i} \rightarrow B \quad(i=1,2)$ over the same base space, the direct sum (Whitney sum) of E_{1} and E_{2} is a space defined by:

$$
E_{1} \oplus E_{2}=\left\{\left(v_{1}, v_{2}\right) \in E_{1} \times E_{2}: p_{1}\left(v_{1}\right)=p_{2}\left(v_{2}\right)\right\}
$$

or concisely the pullback of a diagram $E_{1} \xrightarrow{p_{1}} B \stackrel{p_{2}}{\longleftrightarrow} E_{2}$. This space indeed is a vector bundle with the fiber $p_{1}^{-1}(b) \oplus p_{2}^{-1}(b)$ over $b \in B$, which is linearly isomorphic to $\mathbb{R}^{n_{1}+n_{2}}$. The local trivialization is given by:

$$
h_{1} \oplus h_{2}: U \times\left(\mathbb{R}^{n_{1}} \oplus \mathbb{R}^{n_{2}}\right) \rightarrow p_{1}^{-1}(U) \oplus p_{2}^{-1}(U),
$$

where $h_{1} \oplus h_{2}$ is the induced map from a pullback diagram:

Because the inverse of $h_{1} \oplus h_{2}$ is analogously induced and all maps in the diagram are continuous, this is a trivialization over U.

Example. trivial bundles As already stated, at least implicitly, two trivial bundles sum up to a trivial bundle by the direct sum.

Example. stably trivial bundle A vector bundle that becomes trivial bundle after taking the direct sum with a trivial bundle is called stably trivial. The tangent bundle $T S^{n}$ over n-sphere is such example, by taking direct sum with normal bundle $N S^{n}$, which is isomorphic to a trivial bundle $S^{n} \times \mathbb{R}$. The isomorphism is given by:

$$
f: T S^{n} \oplus N S^{n} \rightarrow S^{n} \times \mathbb{R}^{n+1} ; \quad(x, v, t x) \mapsto(x, v+t x) \quad(x \perp v \text { and } t \in \mathbb{R})
$$

2.4 Inner Products

Definition. A topological space X is called paracompact if for any open cover $\mathcal{U}=\left\{U_{\alpha}\right\}$ of X, there exists a locally finite open refinement of \mathcal{U}.

Definition. For a topological space X and given an open cover $\mathcal{U}=\left\{U_{\alpha}\right\}, a$ (continuous) partition of unity subordinated to the cover \mathcal{U} is a collection $\left\{u_{j}\right\}_{j \in J}$ of (continuous) functions $u_{j}: X \rightarrow[0,1]$ s.t.

1. $\operatorname{Supp}\left(u_{j}\right):=\overline{u_{j}^{-1}((0,1])} \subset U_{\alpha}$ for some α,
2. $\forall x \in X, \quad u_{j}(x) \neq 0$ for only finitely many $j \in J$,
3. $\forall x \in X, \quad \sum_{j} u_{j}(x)=1$.

Fact. Let X be a Hausdorff space. Then X is paracompact iff for any open cover, X admits a (continuous) partition of unity subordinated to the cover.

Note. By definition, it implies that $\left\{u_{j}^{-1}((0,1])\right\}_{j \in J}$ is an open refinement of original open cover \mathcal{U}, hence again an open cover.

Definition. Let $p_{i}: E_{i} \rightarrow B_{i} \quad(i=1,2)$ be two distinct vector bundles. A pair of continuous maps $\left\langle\hat{f}: E_{1} \rightarrow E_{2}, f: B_{1} \rightarrow B_{2}\right\rangle$ is called a bundle map (or bundle homomorphism) if it commutes the diagram:

where f restricts to a linear map $\left.f\right|_{x}: p_{1}^{-1}(x) \rightarrow p_{2}^{-1}(f(x))$ on each fiber.
Note. When $B_{1}=B_{2}$, we omit a map of base spaces and as such the fiber preserving continuous map $\hat{f}: E_{1} \rightarrow E_{2}$ is then called a bundle map over B_{1}.

Definition. Let $p: E \rightarrow B$ be a vector bundle over a topological field k. A bundle map

$$
\langle,\rangle: E \oplus E \rightarrow B \times k
$$

over B to the trivial line bundle is called an inner product of E if the morphism restricts to a positive definite symmetric bilinear form

$$
\langle,\rangle_{x}: p^{-1}(x) \oplus p^{-1}(x) \rightarrow k
$$

on each fiber.

Definition. vector subbundle Given a vector bundle $p: E \rightarrow B$, a subspace $E_{0} \subset E$ intersecting each fiber of E in a vector subspace such that the restriction $p \mid E_{0}: E_{0} \rightarrow B$ is a vector bundle, is called vector subbundle of E.

Proposition 2. An inner product exists for a vector bundle $p: E \rightarrow B$ if B is paracompact Hausdorff [1, Proposition 1.2].

Proof. Let $\mathcal{U}=\left\{U_{j}\right\}_{j \in J}$ be an open cover composed of coordinate charts accompanying with a collection of coordinate functions $\phi_{j}: U_{j} \times k^{n} \rightarrow p^{-1}\left(U_{j}\right)$.

An inner product is locally defined without paracompactness, explicitly:

$$
\langle,\rangle_{j}:\left.\left.E\right|_{U_{j}} \oplus E\right|_{U_{j}}=p^{-1}\left(U_{j}\right) \oplus p^{-1}\left(U_{j}\right) \xrightarrow{\phi_{j}^{-1} \oplus \phi_{j}^{-1}} U_{j} \times k^{2 n} \xrightarrow{1 \times\langle,\rangle_{\mathbb{R}^{n}}} U_{j} \times k .
$$

To extend this map to $E \oplus E$, notice that for any point $x \in U_{i} \cap U_{j} \neq \varnothing$, an non-empty intersection of two coordinate neighbourhoods, the values of local inner products differ by corresponding glueing function, explicitly:

$$
\left\langle v_{x}, w_{x}\right\rangle_{i}=\left\langle g_{i j}(x) \cdot v_{x}, g_{i j}(x) \cdot w_{x}\right\rangle_{j}
$$

for some $g_{i j}(x) \in \mathrm{GL}_{n}(k)$. To amend this, take a partition of unity $\left\{u_{\lambda}\right\}_{\lambda \in \Lambda}$ subordinated to \mathcal{U} and a function $\alpha: \Lambda \rightarrow J$ of indices such that $\operatorname{Supp}\left(u_{\lambda}\right) \subset U_{\alpha(\lambda)}$. Then the inner product defined by:

$$
\left\langle v_{x}, w_{x}\right\rangle=\sum_{\lambda} u_{\lambda}(x)\left\langle v_{x}, w_{x}\right\rangle_{\alpha(\lambda)}
$$

is the desired map.

2.5 Tensor Products

Definition. Define the tensor product of vector bundles $E_{1} \xrightarrow{p_{1}} B \stackrel{p_{2}}{\rightleftarrows} E_{2}$ by:

$$
E_{1} \otimes E_{2}=\bigcup_{x \in B}\left(p_{1}^{-1}(x) \otimes p_{2}^{-1}(x)\right) \cong \bigcup_{x \in B}\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)
$$

which as a set, is (disjoint) union of the tensor product of fibers. The topology is defined on each subset $p_{1}^{-1}(U) \otimes p_{2}^{-1}(U) \subset E_{1} \otimes E_{2}$ for any coordinate chart $U \subset B$ on which $E_{i}(\mathrm{i}=1,2)$ are trivialized.

We can set a topology on the subset by letting the fiberwise isomorphic bijection

$$
p_{1}^{-1}(U) \otimes p_{2}^{-1}(U) \ni v_{x} \otimes w_{x} \mapsto\langle x, v \otimes w\rangle \in U \times\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right)
$$

a homeomorphism, considering $\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}$ as the space $\mathbb{R}^{n_{1} n_{2}}$.
A transition function is given by $(x, v \otimes w) \sim\left(x, g_{\beta \alpha}^{1}(x) \otimes g_{\beta \alpha}^{2}(x)(v \otimes w)\right)$ for each $(x, v \otimes w) \in$ $\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n_{1} n_{2}}$, with $g_{\beta \alpha}^{1} \otimes g_{\beta \alpha}^{2}: U_{\alpha} \cap U_{\beta} \rightarrow \operatorname{GL}\left(n_{1} n_{2}, \mathbb{R}\right)$ mapping to the Kronecker product of two matrices:

Note. Transition functions $g_{\beta \alpha}^{1} \otimes g_{\beta \alpha}^{2}$ and $g_{\gamma \beta}^{1} \otimes g_{\gamma \beta}^{2}$ of tensor product satisfy cocycle condition for each $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$.

Proposition 3. The set of isomorphism classes of vector bundle over a base space $B, \bigsqcup_{n \geq 0} \operatorname{Vect}^{n}(B)$ is a commutative monoid (Abelian group not necessarily with the inverse for each element) with respect to the tensor product. Furthermore, the tensor product is distributive with respect to the direct sum.

It is enough to show the following properties.

1. associativity $\left(E_{1} \otimes E_{2}\right) \otimes E_{3} \approx E_{1} \otimes\left(E_{2} \otimes E_{3}\right)$,
2. commutativity $E_{1} \otimes E_{2} \approx E_{2} \otimes E_{1}$,
3. identity $E \otimes(B \times \mathbb{R}) \approx E$,
4. distributive with respect to direct sum $E_{1} \otimes\left(E_{2} \oplus E_{3}\right) \approx\left(E_{1} \otimes E_{2}\right) \oplus\left(E_{1} \otimes E_{3}\right)$,

Proof. We only show the distributive property here and the other properties will be omitted for detail. Define a distribution map by:

$$
f: E_{1} \otimes\left(E_{2} \oplus E_{3}\right) \rightarrow\left(E_{1} \otimes E_{2}\right) \oplus\left(E_{1} \otimes E_{3}\right) ; \quad f\left((x, \alpha), v_{1} \otimes\left(v_{2}, v_{3}\right)\right)=\left((x, \alpha), v_{1} \otimes v_{2}, v_{1} \otimes v_{3}\right)
$$

which is fiberwise linear isomorphism and continuous over each coordinate chart, say:

$$
\begin{aligned}
& p_{1}^{-1}\left(U_{\alpha}\right) \otimes\left(p_{2}^{-1}\left(U_{\alpha}\right) \oplus p_{3}^{-1}\left(U_{\alpha}\right)\right) \xrightarrow{f}\left(p_{1}^{-1}\left(U_{\alpha}\right) \otimes p_{2}^{-1}\left(U_{\alpha}\right)\right) \oplus\left(p_{1}^{-1}\left(U_{\alpha}\right) \otimes p_{3}^{-1}\left(U_{\alpha}\right)\right) \\
& \approx \uparrow \quad \approx \uparrow \\
& U_{\alpha} \times\left(\mathbb{R}^{n_{1}} \otimes\left(\mathbb{R}^{n_{2}} \oplus \mathbb{R}^{n_{3}}\right)\right) \longrightarrow U_{\alpha} \times\left(\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}\right) \oplus\left(\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{3}}\right)\right),
\end{aligned}
$$

so that f is a bundle isomorphism as in the Note after the Proposition 1.
Corollary 1. $\operatorname{Vect}^{1}(B)$ is an Abelian group with respect to the tensor product.
Proof. For a line bundle $E \in \operatorname{Vect}^{1}(B)$, the inverse E^{-1} is defined by replacing the transition functions of E with its inverses. Then an isomorphism to the trivial line bundle is given by:

$$
f: E \otimes E^{-1} \rightarrow B \times \mathbb{R} ; \quad f((x, \alpha),[v \otimes w])=(x, v w),
$$

on each coordinate chart U_{α}. The equivalence class is taken effect of transition functions whenever $x \in U_{\alpha} \cap U_{\beta}$, in a form:

$$
v \otimes w \sim g_{\beta \alpha}(x) v \otimes g_{\beta \alpha}^{-1}(x) w=g_{\beta \alpha}(x) g_{\beta \alpha}^{-1}(x)(v \otimes w)=v \otimes w
$$

Hence the bundle has trivial structure group, which makes f continuous. The transition functions commute since they are one dimensional (non-zero) real numbers at each point.

References

[1] A. Hatcher. Vector Bundles and K-Theory. http://www.math.cornell.edu/ $h a t c h e r . ~ 2003$.

