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2 Vector Bundle

2.2 Sections

Proposition 1. an n-dimensional bundle p : E → B is isomorphic to the trivial bundle iff it has n
sections s1, . . . , sn such that the vectors s1(b), . . . , sn(b) are linearly independent in each fiber p−1(b).

Proof. When f : B × Rn → E is an isomorphism, we can define such sections by si(b) = f(b, vi) for
each i, where vi ∈ Rn is a linearly independent i-th n-vector. The bundle isomorphism takes linearly
independent sections to linearly independent sections.

On the other hand, when {si}i is such a series of sections, a bundle isomorphism can be defined by:

f : B × Rn → E; (b, t1, . . . , tn) 7→
∑
i

tisi(b).

This is an isomorphism on each fiber p−1(b) and furthermore, a homeomorphism. This is because its
composition with a trivialization h−1 : p−1(U) → U × Rn is continuous by definition of f and the
topology on E, for point (b, t) ∈ U × Rn, there exists a transition function g : U → GLn(R) such that
h−1(f(b, t)) = (b, g(b) · t) where g(b) continuously depends on si(b), hence on b.

B × Rn ⊃ U × Rn p−1(U) ⊂ E

U × Rn

f

h−1∼=

Its inverse (b, s) 7→ (b, g(b)−1 · s) is given by inverted determinant of g(b) times its adjugate, which is
again continuous.

Note. In a literature such as [1], the proof is broken into two parts; the later employs a lemma asserting
that fiber-wise isomorphic continuous function is homeomorphism, hence bundle isomorphism. Our
vector bundle explicitly includes coordinate transformation as its definition, resulting that we know the
composite function h−1◦f is given by a regular matrix that continuously depends on the first coordinate.

Example. The tangent bundle TS1 → S1 is trivial since it admits non-vanishing global section

(x1, x2) 7→ (−x2, x1).

Example. To see non-triviality of the tangent bundle over S2, consult Hairy Ball Theorem.

2.3 Whitney Sum

Given two vector bundles pi : Ei → B (i = 1, 2) over the same base space, the direct sum (Whitney
sum) of E1 and E2 is a space defined by:

E1 ⊕ E2 =
{
(v1, v2) ∈ E1 × E2 : p1(v1) = p2(v2)

}
,

or concisely the pullback of a diagram E1
p1−→ B

p2←− E2. This space indeed is a vector bundle with the
fiber p−1

1 (b)⊕ p−1
2 (b) over b ∈ B, which is linearly isomorphic to Rn1+n2 . The local trivialization is given

by:
h1 ⊕ h2 : U × (Rn1 ⊕ Rn2)→ p−1

1 (U)⊕ p−1
2 (U),
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where h1 ⊕ h2 is the induced map from a pullback diagram:

U

p−1
1 (U) p−1

1 (U)⊕ p−1
2 (U) p−1

2 (U)

U × Rn1 U × (Rn1 ⊕ Rn2) U × Rn2 .

p1 p2

h1 h2

Because the inverse of h1 ⊕ h2 is analogously induced and all maps in the diagram are continuous, this
is a trivialization over U.

Example. trivial bundles As already stated, at least implicitly, two trivial bundles sum up to a trivial
bundle by the direct sum.

Example. stably trivial bundle A vector bundle that becomes trivial bundle after taking the direct sum
with a trivial bundle is called stably trivial. The tangent bundle TSn over n-sphere is such example,
by taking direct sum with normal bundle NSn, which is isomorphic to a trivial bundle Sn × R. The
isomorphism is given by:

f : TSn ⊕NSn → Sn × Rn+1; (x, v, tx) 7→ (x, v + tx) (x⊥v and t ∈ R).

2.4 Inner Products

Definition. A topological space X is called paracompact if for any open cover U = {Uα} of X, there
exists a locally finite open refinement of U .

Definition. For a topological space X and given an open cover U = {Uα}, a (continuous) partition of
unity subordinated to the cover U is a collection {uj}j∈J of (continuous) functions uj : X → [0, 1] s.t.

1. Supp(uj) := u−1
j ((0, 1]) ⊂ Uα for some α,

2. ∀x ∈ X, uj(x) ̸= 0 for only finitely many j ∈ J ,

3. ∀x ∈ X,
∑

j uj(x) = 1.

Fact. Let X be a Hausdorff space. Then X is paracompact iff for any open cover, X admits a (contin-
uous) partition of unity subordinated to the cover.

Note. By definition, it implies that {u−1
j ((0, 1])}j∈J is an open refinement of original open cover U ,

hence again an open cover.

Definition. Let pi : Ei → Bi (i = 1, 2) be two distinct vector bundles. A pair of continuous maps

⟨f̂ : E1 → E2, f : B1 → B2⟩ is called a bundle map (or bundle homomorphism) if it commutes the
diagram:

E1 E2

B1 B2,

f̂

p1 p2

f

where f restricts to a linear map f |x : p−1
1 (x)→ p−1

2 (f(x)) on each fiber.

Note. When B1 = B2, we omit a map of base spaces and as such the fiber preserving continuous map
f̂ : E1 → E2 is then called a bundle map over B1.

Definition. Let p : E → B be a vector bundle over a topological field k. A bundle map

⟨, ⟩ : E ⊕ E → B × k

over B to the trivial line bundle is called an inner product of E if the morphism restricts to a positive
definite symmetric bilinear form

⟨, ⟩x : p−1(x)⊕ p−1(x)→ k

on each fiber.
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Definition. vector subbundle Given a vector bundle p : E → B, a subspace E0 ⊂ E intersecting each
fiber of E in a vector subspace such that the restriction p|E0 : E0 → B is a vector bundle, is called vector
subbundle of E.

Proposition 2. An inner product exists for a vector bundle p : E → B if B is paracompact Hausdorff
[1, Proposition 1.2].

Proof. Let U = {Uj}j∈J be an open cover composed of coordinate charts accompanying with a collection
of coordinate functions ϕj : Uj × kn → p−1(Uj).

An inner product is locally defined without paracompactness, explicitly:

⟨, ⟩j : E|Uj
⊕ E|Uj

= p−1(Uj)⊕ p−1(Uj)
ϕ−1
j ⊕ϕ−1

j−−−−−−→ Uj × k2n
1×⟨,⟩Rn−−−−−→ Uj × k.

To extend this map to E⊕E, notice that for any point x ∈ Ui∩Uj ̸= ∅, an non-empty intersection of two
coordinate neighbourhoods, the values of local inner products differ by corresponding glueing function,
explicitly:

⟨vx, wx⟩i = ⟨gij(x) · vx, gij(x) · wx⟩j ,

for some gij(x) ∈ GLn(k). To amend this, take a partition of unity {uλ}λ∈Λ subordinated to U and a
function α : Λ→ J of indices such that Supp(uλ) ⊂ Uα(λ). Then the inner product defined by:

⟨vx, wx⟩ =
∑
λ

uλ(x)⟨vx, wx⟩α(λ)

is the desired map.

2.5 Tensor Products

Definition. Define the tensor product of vector bundles E1
p1−→ B

p2←− E2 by:

E1 ⊗ E2 =
⋃
x∈B

(p−1
1 (x)⊗ p−1

2 (x)) ∼=
⋃
x∈B

(Rn1 ⊗ Rn2),

which as a set, is (disjoint) union of the tensor product of fibers. The topology is defined on each subset
p−1
1 (U)⊗ p−1

2 (U) ⊂ E1 ⊗ E2 for any coordinate chart U ⊂ B on which Ei (i=1,2) are trivialized.
We can set a topology on the subset by letting the fiberwise isomorphic bijection

p−1
1 (U)⊗ p−1

2 (U) ∋ vx ⊗ wx 7→ ⟨x, v ⊗ w⟩ ∈ U × (Rn1 ⊗ Rn2)

a homeomorphism, considering Rn1 ⊗ Rn2 as the space Rn1n2 .
A transition function is given by (x, v ⊗ w) ∼ (x, g1βα(x) ⊗ g2βα(x)(v ⊗ w)) for each (x, v ⊗ w) ∈

(Uα ∩ Uβ)× Rn1n2 , with g1βα ⊗ g2βα : Uα ∩ Uβ → GL(n1n2,R) mapping to the Kronecker product of two
matrices:

Rn1 × Rn2 Rn1 × Rn2 Rn1 ⊗ Rn2 Rn1n2

Rn1 ⊗ Rn2

Rn1n2

τ

∼=

g1
βα(x)×g2

βα(x) τ ∼=

g1
βα(x)⊗g2

βα(x)

∼=

Note. Transition functions g1βα⊗ g2βα and g1γβ ⊗ g2γβ of tensor product satisfy cocycle condition for each
x ∈ Uα ∩ Uβ ∩ Uγ .

Proposition 3. The set of isomorphism classes of vector bundle over a base space B,
⊔

n≥0 Vect
n(B)

is a commutative monoid (Abelian group not necessarily with the inverse for each element) with respect
to the tensor product. Furthermore, the tensor product is distributive with respect to the direct sum.

It is enough to show the following properties.

1. associativity (E1 ⊗ E2)⊗ E3 ≈ E1 ⊗ (E2 ⊗ E3),
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2. commutativity E1 ⊗ E2 ≈ E2 ⊗ E1,

3. identity E ⊗ (B × R) ≈ E,

4. distributive with respect to direct sum E1 ⊗ (E2 ⊕ E3) ≈ (E1 ⊗ E2)⊕ (E1 ⊗ E3),

Proof. We only show the distributive property here and the other properties will be omitted for detail.
Define a distribution map by:

f : E1 ⊗ (E2 ⊕ E3)→ (E1 ⊗ E2)⊕ (E1 ⊗ E3); f((x, α), v1 ⊗ (v2, v3)) = ((x, α), v1 ⊗ v2, v1 ⊗ v3),

which is fiberwise linear isomorphism and continuous over each coordinate chart, say:

p−1
1 (Uα)⊗ (p−1

2 (Uα)⊕ p−1
3 (Uα)) (p−1

1 (Uα)⊗ p−1
2 (Uα))⊕ (p−1

1 (Uα)⊗ p−1
3 (Uα))

Uα × (Rn1 ⊗ (Rn2 ⊕ Rn3)) Uα × ((Rn1 ⊗ Rn2)⊕ (Rn1 ⊗ Rn3)),

f

≈ ≈

so that f is a bundle isomorphism as in the Note after the Proposition 1.

Corollary 1. Vect1(B) is an Abelian group with respect to the tensor product.

Proof. For a line bundle E ∈ Vect1(B), the inverse E−1 is defined by replacing the transition functions
of E with its inverses. Then an isomorphism to the trivial line bundle is given by:

f : E ⊗ E−1 → B × R; f((x, α), [v ⊗ w]) = (x, vw),

on each coordinate chart Uα. The equivalence class is taken effect of transition functions whenever
x ∈ Uα ∩ Uβ , in a form:

v ⊗ w ∼ gβα(x)v ⊗ g−1
βα(x)w = gβα(x)g

−1
βα(x)(v ⊗ w) = v ⊗ w.

Hence the bundle has trivial structure group, which makes f continuous. The transition functions
commute since they are one dimensional (non-zero) real numbers at each point.
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