Vector Bundles 3

stma

December 16, 2023

2 Vector Bundle

2.6 Associated Fiber Bundles

Because a vector bundle is required to have fiber isomorphic to a vector space, it is unlikely to be applied to vast instances that naturally arise in geometry. Some topological theory, such as Leray-Hirsch theorem, can be applied only to more general object called fiber bundle, so we will describe how to construct a fiber bundle from a vector bundle. The constructed fiber bundle is called associated (fiber) bundle (to the given vector bundle).

Definition. A map $p: E \rightarrow B$ is called a fiber bundle over B with fiber F if we replace the model fiber \mathbb{R}^{n} with F and isomorphism with homeomorphism in the definition of vector bundle.

Example. (unit) sphere bundle For a vector bundle $p: E \rightarrow B$ with the (model) fiber \mathbb{R}^{n} equipped with an inner product, the associated (unit) sphere bundle $S(E)$ is defined by:

$$
S(E)=\{(x, v) \in E:|v|=1\}
$$

with fiber S^{n-1}. The local trivialization is constructed by first giving an isometric local trivialization, or equivalently choosing an inner product on E so that the following diagram commutes (this inner product is compatible with the standard one in \mathbb{R}^{n}):

Secondly, the local trivialization restrict to unit vectors on each $x \in U$ gives the local trivialization on $S(E)$.

Note. Without inner product, the sphere bundle of E can be defined by removing zero section and factoring out scalar multiplication of positive real numbers on each fibers, namely:

$$
S(E)=(E \backslash 0) / \mathbb{R}^{+},
$$

analogously, the disc bundle $D(E)$ of E whose fiber has the length equal or less than 1 , can be defined by the mapping cylinder of the projection $S(E) \rightarrow B$, precisely:

$$
D(E)=((S(E) \times I) \sqcup B) /\left(\left(v_{b}, 0\right) \sim b\right)
$$

The local trivialization is induced by restricting the original $U \times \mathbb{R}^{n} \rightarrow p^{-1}(U)$.
Example. projective bundle The projective bundle $P(E)$ of E is defined by the quotient space of $S(E)$ factoring out scalar multiplication of non-zero real numbers:

$$
P(E)=S(E) / \mathbb{R}^{*}
$$

The local trivialization is induced by the quotient, homeomorphic to $U \times \mathbb{R} P^{n-1}$ over U.

Example. flag bundle Let $E \rightarrow B$ a vector bundle with fiber isomorphic to \mathbb{R}^{n}. As a generalization of projective bundle, for chosen $k \leq n$, the (k-folded) flag bundle is a subspace $F_{k}(E)$ of $\prod^{k} P(E)$ consisting of k-tuples of orthogonal lines in fibers of E (this product is taken as the pullback of $E_{1} \rightarrow B \leftarrow E_{2}$ within fiber bundles, analogous to Whitney sum in vector bundles).

The local trivialization is homeomorphism of $F_{k}(U)$, the subspace of $U \times \prod^{k} \mathbb{R} P^{n-1}$ on U, composed of k-tuples of orthogonal lines on each fiber.

Example. Stiefel bundle The Stiefel bundle $V_{k}(E) \rightarrow B$, having k-tuples of orthogonal unit vectors in fibers of E as the point, is though of as a subspace $V_{k}(E) \subset \prod^{k} S(E)$. Stiefel bundle is similar object to flag bundle, yet it takes distinct form in that the linear subspace generated by orthonormal k-frames on each fiber is given an algebraic interpretation.

Example. Grassmann bundle The Grassmann bundle $G_{k}(E) \rightarrow B$ of k-dimensional linear subspaces of fibers of E, is the quotient space of $V_{k}(E)$ obtained by $G L_{k}(\mathbb{R})$ action on the fiber, identifying two k -frames in a fiber if they span the same subspace of the fiber. The fiber of $G_{k}(E)$ is the Grassmann manifold $G_{k}\left(\mathbb{R}^{n}\right)$ of k-planes through the origin in \mathbb{R}^{n}.

2.7 Pullback Bundles and its classifying property

Definition. (pullback bundle) Given a vector bundle $p: E \rightarrow B$ and a map $f: A \rightarrow B$, the pullback bundle $f^{*} E$ (of E along f) is a space defined by

$$
f^{*} E=\left\{\left(a, v_{b}\right) \in A \times E \mid f(a)=p\left(v_{b}\right)=b\right\}
$$

Fact. The pullback bundle $f^{*} E$ of $A \xrightarrow{f} B \stackrel{p}{\leftarrow} E$ is a vector bundle that commutes the diagram

furthermore, the pullback bundle is unique (against f and p) up to isomorphism.
Proposition 1. For given maps between (base) spaces, the induced bundle maps satisfy the following properties:
(1) $(f g)^{*}(E) \approx g^{*}\left(f^{*}(E)\right)$;
(2) $\mathfrak{1}^{*}(E) \approx E$;
(3) $f^{*}\left(E_{1} \oplus E_{2}\right) \approx f^{*}\left(E_{1}\right) \oplus f^{*}\left(E_{2}\right)$;
(4) $f^{*}\left(E_{1} \otimes E_{2}\right) \approx f^{*}\left(E_{1}\right) \otimes f^{*}\left(E_{2}\right)$.

Proof. (1) By the universal property of pullbacks, the following diagram shows that the fiber-wise isomorphic bundle map over A (i.e. dotted arrow) is uniquely induced up to isomorphism, which turns out to be a bundle isomorphism.

Proof. (2) The pullback diagram below shows that the result follows as claimed.

Proof. (3) By (1), it is sufficient to show that there is an isomorphism:

$$
\begin{equation*}
f^{*}\left(E_{1}\right) \oplus f^{*}\left(E_{2}\right) \approx(\Delta f)^{*}\left(E_{1} \times E_{2}\right) \tag{E1}
\end{equation*}
$$

fitting in the diagram:

χ is defined by $p_{1}^{-1}(f(b)) \times p_{2}^{-1}(f(b)) \ni\left(v_{1}^{b}, v_{2}^{b}\right) \mapsto b \in B$ and ξ a canonical composition $f^{*}\left(E_{1}\right) \oplus$ $f^{*}\left(E_{2}\right) \hookrightarrow f^{*}\left(E_{1}\right) \times f^{*}\left(E_{2}\right) \rightarrow E_{1} \times E_{2}$, where the first map of ξ can be replaced by the induced map to $E_{1} \oplus E_{2}$, by the pullback cone $C \xrightarrow{\Delta} C \times C \stackrel{p_{1} \times p_{2}}{\longleftarrow} E_{1} \times E_{2}$ as such.

ξ and χ gives rise to the isomorphism (E1) given by $\left(v_{1}^{b}, v_{2}^{b}\right) \mapsto\left(\chi\left(v_{1}^{b}\right), \xi\left(v_{1}^{b}, v_{2}^{b}\right)\right)=\left(b, v_{1}^{\prime}, v_{2}^{\prime}\right)$, which is a fiber-wise linear isomorphic continuous map of bundles over B.

Proof. (4) $f^{*}\left(E_{1} \otimes E_{2}\right)$ and $f^{*}\left(E_{1}\right) \otimes f^{*}\left(E_{2}\right)$ are safely assumed to have the same open covering $\left\{f^{-1}\left(U_{i}\right)\right\}_{i}$ of the base space B with respect to which E_{1} and E_{2} both locally trivialize over $U_{i} \subset C$. Then according to the gluing construction of a vector bundle over a Čech cocycle, we only need to check the transition functions yield the same actions on the model fibers. Indeed, the following diagram commutes by definition of $g_{i j}$, where κ is the induced bilinear function of k-algebra:

Theorem 1. Given a vector bundle $p: E \rightarrow B$ and homotopic maps $f_{0}, f_{1}: A \rightarrow B$, then the induced bundles $f_{0}^{*}(E)$ and $f_{1}^{*}(E)$ are isomorphic if A is compact Hausdorff or more generally paracompact.

By the factorization $A \times\{i\} \hookrightarrow A \times I \xrightarrow{F} B$ of $f_{i}(i=0,1)$ through a homotopy $F: A \times I \rightarrow B$ from f_{0} to f_{1}, it is sufficient to show that the restrictions of a vector bundle $E \rightarrow X \times I$ over $X \times\{0\}$ and $X \times\{1\}$ are isomorphic if X is paracompact.

As the first step, let us show the two preliminary facts to use in the proof of Theorem 1.
(P1) A vector bundle $p: E \rightarrow X \times[a, b]$ is trivial if its restrictions over $X \times[a, c]$ and $X \times[c, b]$ are both trivial for some $c \in(a, b)$.
(P2) For a vector bundle $p: E \rightarrow X \times I$, there exists an open cover $\left\{U_{\alpha}\right\}$ of X so that each restriction $p^{-1}\left(U_{\alpha} \times I\right) \rightarrow U_{\alpha} \times I$ is trivial.

Proof. (P1) Assume we are given isomorphisms $h_{1}: E_{1}=p^{-1}(X \times[a, c]) \rightarrow X \times[a, c] \times k^{n}$ and $h_{2}: E_{2}=p^{-1}(X \times[c, b]) \rightarrow X \times[c, b] \times k^{n}$. By replacing h_{2} with the composition:

$$
E_{2} \xrightarrow{h_{2}} X \times[c, b] \times k^{n} \xrightarrow{c} X \times\{c\} \times k^{n} \xrightarrow{h_{1} h_{2}^{-1}} X \times\{c\} \times k^{n} \hookrightarrow X \times[c, b] \times k^{n},
$$

we get the isomorphism $h_{1} \cup h_{2}: E \rightarrow X \times[a, b] \times k^{n}$ that (globally) trivializes E.
Proof. (P2) For each $x \in X$, we can find open neighbourhoods $U_{x, 1}, \ldots, U_{x, k}$ in X and a partition $0=t_{0}<t_{1}<\ldots<t_{k}=1$ of $[0,1]$ such that the bundle is trivial over $U_{x, i} \times\left[t_{i-1}, t_{i}\right]$, using compactness of $[0,1]$. Then by (P1) the bundle is trivial over $U_{\alpha} \times I$ where $U_{\alpha}=U_{x, 1} \cap \ldots \cap U_{x, k}$.
Proof. (Theorem 1) As in the book [1] shows, the essential part of the proof resides in the finite case, hence we will write only when B is compact Hausdorff.

Let $\left\{U_{\alpha}\right\}$ be an open cover of X such that $p^{-1}\left(U_{\alpha} \times I\right)$ is a trivial bundle (by (P2), these cover always exists). We can assume $\mathcal{U}=\left\{U_{\alpha}\right\}=\left\{U_{1}, \ldots, U_{m}\right\}$ since X is assumed to be compact.

Let $\left\{u_{i}\right\}_{i \leq m}$ be a partition of unity subordinate to \mathcal{U} and define a function $\xi_{k}: X \rightarrow I$ by

$$
\xi_{k}=u_{1}+u_{2}+\ldots+u_{k} \quad(0 \leq k \leq m)
$$

Notice in particular $\xi_{0}=0$ and $\xi_{m}=1$ on X.
A series of graphs $\Gamma_{\xi_{k}} \subset X \times I$ of ξ_{k} yield the restricted bundles $p_{k}: E_{k} \rightarrow \Gamma_{\xi_{k}}$ that fit into the following commutative diagram:

where the bottom arrows are homeomorphisms (of graphs to the domain X).
To construct the lifts (dotted arrows), note that $\xi_{k}=\xi_{k-1}$ on $x \in X \backslash U_{k}$ and hence $E_{k}=E_{k-1}$ over $\left(X \backslash U_{k}\right) \times I$. Because E is trivialized over $U_{k} \times I$, so does over the restriction to each graphs that amount to the union of homeomorphisms:

h_{k} are trivially isomorphisms and the composition $h_{m} \circ \cdots \circ h_{1}$ is the desired bundle isomorphism.

References

[1] A. Hatcher. Vector Bundles and K-Theory. http://www.math.cornell.edu/~hatcher. 2003.

