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2 Vector Bundle

2.6 Associated Fiber Bundles

Because a vector bundle is required to have fiber isomorphic to a vector space, it is unlikely to be applied
to vast instances that naturally arise in geometry. Some topological theory, such as Leray-Hirsch theorem,
can be applied only to more general object called fiber bundle, so we will describe how to construct a
fiber bundle from a vector bundle. The constructed fiber bundle is called associated (fiber) bundle (to
the given vector bundle).

Definition. A map p : E → B is called a fiber bundle over B with fiber F if we replace the model fiber
Rn with F and isomorphism with homeomorphism in the definition of vector bundle.

Example. (unit) sphere bundle For a vector bundle p : E → B with the (model) fiber Rn equipped with
an inner product, the associated (unit) sphere bundle S(E) is defined by:

S(E) = {(x, v) ∈ E : |v| = 1},

with fiber Sn−1. The local trivialization is constructed by first giving an isometric local trivialization, or
equivalently choosing an inner product on E so that the following diagram commutes (this inner product
is compatible with the standard one in Rn):

U × R2n U × R

p−1(U)⊕ p−1(U) U × R.

⟨,⟩

hU⊕hU

⟨,⟩U

Secondly, the local trivialization restrict to unit vectors on each x ∈ U gives the local trivialization
on S(E).

Note. Without inner product, the sphere bundle of E can be defined by removing zero section and
factoring out scalar multiplication of positive real numbers on each fibers, namely:

S(E) = (E\0)/R+,

analogously, the disc bundle D(E) of E whose fiber has the length equal or less than 1, can be defined
by the mapping cylinder of the projection S(E)→ B, precisely:

D(E) = ((S(E)× I) ⊔B)/
(
(vb, 0) ∼ b

)
.

The local trivialization is induced by restricting the original U × Rn → p−1(U).

Example. projective bundle The projective bundle P (E) of E is defined by the quotient space of S(E)
factoring out scalar multiplication of non-zero real numbers:

P (E) = S(E)/R∗.

The local trivialization is induced by the quotient, homeomorphic to U × RPn−1 over U .

1



Example. flag bundle Let E → B a vector bundle with fiber isomorphic to Rn. As a generalization of
projective bundle, for chosen k ≤ n, the (k-folded) flag bundle is a subspace Fk(E) of

∏k
P (E) consisting

of k-tuples of orthogonal lines in fibers of E (this product is taken as the pullback of E1 → B ← E2

within fiber bundles, analogous to Whitney sum in vector bundles).

The local trivialization is homeomorphism of Fk(U), the subspace of U ×
∏k RPn−1 on U , composed

of k-tuples of orthogonal lines on each fiber.

Example. Stiefel bundle The Stiefel bundle Vk(E) → B, having k-tuples of orthogonal unit vectors in

fibers of E as the point, is though of as a subspace Vk(E) ⊂
∏k

S(E). Stiefel bundle is similar object to
flag bundle, yet it takes distinct form in that the linear subspace generated by orthonormal k-frames on
each fiber is given an algebraic interpretation.

Example. Grassmann bundle The Grassmann bundle Gk(E) → B of k-dimensional linear subspaces
of fibers of E, is the quotient space of Vk(E) obtained by GLk(R) action on the fiber, identifying two
k-frames in a fiber if they span the same subspace of the fiber. The fiber of Gk(E) is the Grassmann
manifold Gk(Rn) of k-planes through the origin in Rn.

2.7 Pullback Bundles and its classifying property

Definition. (pullback bundle) Given a vector bundle p : E → B and a map f : A → B, the pullback
bundle f∗E (of E along f) is a space defined by

f∗E = {(a, vb) ∈ A× E|f(a) = p(vb) = b}.

Fact. The pullback bundle f∗E of A
f−→ B

p←− E is a vector bundle that commutes the diagram

f∗E E

A B;

p

f

furthermore, the pullback bundle is unique (against f and p) up to isomorphism.

Proposition 1. For given maps between (base) spaces, the induced bundle maps satisfy the following
properties:

(1) (fg)∗(E) ≈ g∗(f∗(E));

(2) 1∗(E) ≈ E;

(3) f∗(E1 ⊕ E2) ≈ f∗(E1)⊕ f∗(E2);

(4) f∗(E1 ⊗ E2) ≈ f∗(E1)⊗ f∗(E2).

Proof. (1) By the universal property of pullbacks, the following diagram shows that the fiber-wise iso-
morphic bundle map over A (i.e. dotted arrow) is uniquely induced up to isomorphism, which turns out
to be a bundle isomorphism.

(fg)∗(E)

g∗(f∗(E)) f∗(E) E

A B C

∃!

p

g f

Proof. (2) The pullback diagram below shows that the result follows as claimed.
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E

1∗(E) E

B B

∃!

p
p

1

Proof. (3) By (1), it is sufficient to show that there is an isomorphism:

f∗(E1)⊕ f∗(E2) ≈ (∆f)∗(E1 × E2) (E1)

fitting in the diagram:

f∗(E1)⊕ f∗(E2)

f∗(E1 ⊕ E2) E1 ⊕ E2 E1 × E2

B C C × C.

∃!

χ

ξ

p1×p2

f ∆

χ is defined by p−1
1 (f(b)) × p−1

2 (f(b)) ∋ (vb1, v
b
2) 7→ b ∈ B and ξ a canonical composition f∗(E1) ⊕

f∗(E2) ↪→ f∗(E1)× f∗(E2)→ E1 ×E2, where the first map of ξ can be replaced by the induced map to

E1 ⊕ E2, by the pullback cone C
∆−→ C × C

p1×p2←−−−− E1 × E2 as such.

f∗(E1)⊕ f∗(E2) f∗(E1)× f∗(E2) B ×B

E1 ⊕ E2 E1 × E2 C × C

f×f

p1×p2

ξ and χ gives rise to the isomorphism (E1) given by (vb1, v
b
2) 7→ (χ(vb1), ξ(v

b
1, v

b
2)) = (b, v′1, v

′
2), which

is a fiber-wise linear isomorphic continuous map of bundles over B.

Proof. (4) f∗(E1⊗E2) and f∗(E1)⊗f∗(E2) are safely assumed to have the same open covering {f−1(Ui)}i
of the base space B with respect to which E1 and E2 both locally trivialize over Ui ⊂ C. Then according
to the gluing construction of a vector bundle over a Čech cocycle, we only need to check the transition
functions yield the same actions on the model fibers. Indeed, the following diagram commutes by
definition of gij , where κ is the induced bilinear function of k-algebra:

f−1(Ui) ∩ f−1(Uj) Ui ∩ Uj

GL(n1n2, k) GL(n1, k)×GL(n2, k).

f

g1
ij×g2

ijgij

κ

Theorem 1. Given a vector bundle p : E → B and homotopic maps f0, f1 : A → B, then the induced
bundles f∗

0 (E) and f∗
1 (E) are isomorphic if A is compact Hausdorff or more generally paracompact.

By the factorization A×{i} ↪→ A× I
F−→ B of fi (i = 0, 1) through a homotopy F : A× I → B from

f0 to f1, it is sufficient to show that the restrictions of a vector bundle E → X × I over X × {0} and
X × {1} are isomorphic if X is paracompact.

As the first step, let us show the two preliminary facts to use in the proof of Theorem 1.

(P1) A vector bundle p : E → X × [a, b] is trivial if its restrictions over X × [a, c] and X × [c, b] are both
trivial for some c ∈ (a, b).
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(P2) For a vector bundle p : E → X × I, there exists an open cover {Uα} of X so that each restriction
p−1(Uα × I)→ Uα × I is trivial.

Proof. (P1) Assume we are given isomorphisms h1 : E1 = p−1(X × [a, c]) → X × [a, c] × kn and
h2 : E2 = p−1(X × [c, b])→ X × [c, b]× kn. By replacing h2 with the composition:

E2
h2−→ X × [c, b]× kn

c−→ X × {c} × kn
h1h

−1
2−−−−→ X × {c} × kn ↪→ X × [c, b]× kn,

we get the isomorphism h1 ∪ h2 : E → X × [a, b]× kn that (globally) trivializes E.

Proof. (P2) For each x ∈ X, we can find open neighbourhoods Ux,1, . . . , Ux,k in X and a partition
0 = t0 < t1 < . . . < tk = 1 of [0, 1] such that the bundle is trivial over Ux,i× [ti−1, ti], using compactness
of [0, 1]. Then by (P1) the bundle is trivial over Uα × I where Uα = Ux,1 ∩ . . . ∩ Ux,k.

Proof. (Theorem 1) As in the book [1] shows, the essential part of the proof resides in the finite case,
hence we will write only when B is compact Hausdorff.

Let {Uα} be an open cover of X such that p−1(Uα×I) is a trivial bundle (by (P2), these cover always
exists). We can assume U = {Uα} = {U1, . . . , Um} since X is assumed to be compact.

Let {ui}i≤m be a partition of unity subordinate to U and define a function ξk : X → I by

ξk = u1 + u2 + . . .+ uk (0 ≤ k ≤ m).

Notice in particular ξ0 = 0 and ξm = 1 on X.
A series of graphs Γξk ⊂ X × I of ξk yield the restricted bundles pk : Ek → Γξk that fit into the

following commutative diagram:

E0 E1 . . . Em−1 Em

X × {0} = Γξ0 Γξ1 . . . Γξm−1 Γξm = X × {1},

p0

h1

p1

h2 hm−1

pm−1

hm

pm

where the bottom arrows are homeomorphisms (of graphs to the domain X).
To construct the lifts (dotted arrows), note that ξk = ξk−1 on x ∈ X\Uk and hence Ek = Ek−1 over

(X\Uk)×I. Because E is trivialized over Uk×I, so does over the restriction to each graphs that amount
to the union of homeomorphisms:

p−1
k ((X\Uk)× I) Ek p−1

k (Uk × I) ≈ Uk × I × Rn

p−1
k−1((X\Uk)× I) Ek−1 p−1

k−1(Uk × I) ≈ Uk × I × Rn.

∃hk ≈

hk are trivially isomorphisms and the composition hm◦· · ·◦h1 is the desired bundle isomorphism.
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