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2 Vector Bundle
2.6 Associated Fiber Bundles

Because a vector bundle is required to have fiber isomorphic to a vector space, it is unlikely to be applied
to vast instances that naturally arise in geometry. Some topological theory, such as Leray-Hirsch theorem,
can be applied only to more general object called fiber bundle, so we will describe how to construct a
fiber bundle from a vector bundle. The constructed fiber bundle is called associated (fiber) bundle (to
the given vector bundle).

Definition. A map p: E — B is called a fiber bundle over B with fiber F' if we replace the model fiber
R™ with F' and isomorphism with homeomorphism in the definition of vector bundle.

Example. (unit) sphere bundle For a vector bundle p : E — B with the (model) fiber R™ equipped with
an inner product, the associated (unit) sphere bundle S(E) is defined by:

S(E) ={(z,v) € E: [v| =1},

with fiber S”~!. The local trivialization is constructed by first giving an isometric local trivialization, or
equivalently choosing an inner product on E so that the following diagram commutes (this inner product
is compatible with the standard one in R™):

UxR® —Y L xR

thEBhU H

) e p(U) MY U xR

Secondly, the local trivialization restrict to unit vectors on each = € U gives the local trivialization

on S(E).

Note. Without inner product, the sphere bundle of F can be defined by removing zero section and
factoring out scalar multiplication of positive real numbers on each fibers, namely:

S(E) = (E\0)/R™,

analogously, the disc bundle D(E) of E whose fiber has the length equal or less than 1, can be defined
by the mapping cylinder of the projection S(F) — B, precisely:

D(E) = ((S(E) x I) U B)/((v5,0) ~ ).
The local trivialization is induced by restricting the original U x R™ — p~(U).

Example. projective bundle The projective bundle P(E) of E is defined by the quotient space of S(E)
factoring out scalar multiplication of non-zero real numbers:

P(E) = S(E)/R*.

The local trivialization is induced by the quotient, homeomorphic to U x RP"~! over U.



Example. flag bundle Let E — B a vector bundle with fiber isomorphic to R™. As a generalization of
projective bundle, for chosen k < n, the (k-folded) flag bundle is a subspace Fy(F) of Hk P(E) consisting
of k-tuples of orthogonal lines in fibers of E (this product is taken as the pullback of Fy — B « FEj
within fiber bundles, analogous to Whitney sum in vector bundles).

The local trivialization is homeomorphism of Fj(U), the subspace of U x Hk RP"! on U, composed
of k-tuples of orthogonal lines on each fiber.

Example. Stiefel bundle The Stiefel bundle Vi, (E) — B, having k-tuples of orthogonal unit vectors in
fibers of E as the point, is though of as a subspace Vi (E) C Hk S(FE). Stiefel bundle is similar object to
flag bundle, yet it takes distinct form in that the linear subspace generated by orthonormal k-frames on
each fiber is given an algebraic interpretation.

Example. Grassmann bundle The Grassmann bundle Gi(E) — B of k-dimensional linear subspaces
of fibers of E, is the quotient space of Vj(FE) obtained by GL(R) action on the fiber, identifying two
k-frames in a fiber if they span the same subspace of the fiber. The fiber of G (F) is the Grassmann
manifold G (R"™) of k-planes through the origin in R™.

2.7 Pullback Bundles and its classifying property

Definition. (pullback bundle) Given a vector bundle p : E — B and a map f : A — B, the pullback
bundle f*E (of E along f) is a space defined by

fTE = {(a,v) € Ax E|f(a) = p(vp) = b}

Fact. The pullback bundle f*FE of A 1, B & E is a vector bundle that commutes the diagram

f*E > B
lp
A1 B;

furthermore, the pullback bundle is unique (against f and p) up to isomorphism.

Proposition 1. For given maps between (base) spaces, the induced bundle maps satisfy the following
properties:

Proof. (1) By the universal property of pullbacks, the following diagram shows that the fiber-wise iso-
morphic bundle map over A (i.e. dotted arrow) is uniquely induced up to isomorphism, which turns out
to be a bundle isomorphism.

(f9)"(B)

Proof. (2) The pullback diagram below shows that the result follows as claimed.



Proof. (3) By (1), it is sufficient to show that there is an isomorphism:

[T(Er) © f*(E2) = (Af)"(EL X E) (E1)

fitting in the diagram:

P (B @ f(Es)

f(E1® Ey) —— Ey®Ey —— Ey x By

| | Jpoer

B f C—2 LoxcC.

x is defined by py(f(b)) x py H(f(b)) > (v%,v8) — b € B and £ a canonical composition f*(F;) @
[ (E2) — f*(E1) x f*(E2) = E4 >< E5, where the first map of £ can be replaced by the induced map to
P1Xp2

FE, ® E5, by the pullback cone C' —> C x C +——— FE; x FE5 as such.

F(EL) ® f*(E2) —— f*(E1) X f*(Es) —— Bx B

. ! Jps

Ey®E s By x By —22P2 s 0 x O
¢ and x gives rise to the isomorphism (E1) given by (v?,v8) — (x(v?),&(v8,v8)) = (b, v],v}), which
is a fiber-wise linear isomorphic continuous map of bundles over B. O

Proof. (4) f*(E1®FEs) and f*(E1)® f*(E2) are safely assumed to have the same open covering { f~1(U;)};
of the base space B with respect to which F; and Fs both locally trivialize over U; C C. Then according
to the gluing construction of a vector bundle over a Cech cocycle, we only need to check the transition
functions yield the same actions on the model fibers. Indeed, the following diagram commutes by
definition of g;;, where & is the induced bilinear function of k-algebra:

Uy Nt j4>UﬁU

[ ey e

GL(nlng, e GL nl, ) X GlL(Tlg7 )

O

Theorem 1. Given a vector bundle p : E — B and homotopic maps fy, f1 : A — B, then the induced
bundles f§(E) and f;(E) are isomorphic if A is compact Hausdorft or more generally paracompact.

By the factorization A x {i} — A x I L Boff, (i =0,1) through a homotopy F : A x I — B from
fo to fi1, it is sufficient to show that the restrictions of a vector bundle E — X x I over X x {0} and
X x {1} are isomorphic if X is paracompact.

As the first step, let us show the two preliminary facts to use in the proof of Theorem 1.

(P1) A vector bundle p: E — X x [a, b] is trivial if its restrictions over X x [a,c] and X X [¢, b] are both
trivial for some c € (a,b).



(P2) For a vector bundle p : E — X X I, there exists an open cover {U,} of X so that each restriction
p 1 (Uy x I) — U, x I is trivial.

Proof. (P1) Assume we are given isomorphisms h; : E; = p~}(X X [a,c¢]) — X X [a,¢] x k™ and
hy: By = p~Y(X x [¢,b]) = X X [e,b] x k™. By replacing hy with the composition:

By M2 X x [e,b] x k™ S X x {c} x k" 224 X % {e} x k™ s X x [¢,b] x k™,
we get the isomorphism hy Uhs : E — X X [a,b] x k™ that (globally) trivializes E. O

Proof. (P2) For each x € X, we can find open neighbourhoods Uy 1,...,Uy ) in X and a partition
0=ty <t <...<tp=10f[0,1] such that the bundle is trivial over U, ; X [t;—1,t;], using compactness
of [0,1]. Then by (P1) the bundle is trivial over U, x I where Uy =Uz1 N ... N Uy k. O

Proof. (Theorem 1) As in the book [1] shows, the essential part of the proof resides in the finite case,
hence we will write only when B is compact Hausdorff.

Let {U,} be an open cover of X such that p~1 (U, x I) is a trivial bundle (by (P2), these cover always
exists). We can assume U = {U,} = {U1, ..., U, } since X is assumed to be compact.

Let {u;}i<m be a partition of unity subordinate to & and define a function & : X — I by

&p=u+us+...+ux (0<k<m).

Notice in particular £, =0 and &, =1 on X.
A series of graphs I'e, C X x I of &, yield the restricted bundles py : E — I'¢, that fit into the
following commutative diagram:

Ey LSRR - MR SN o N S N
J/po J{pl JIPWL—I J/ m
X x {0} =T, Le, Le, Te,, = X x {1},

where the bottom arrows are homeomorphisms (of graphs to the domain X).

To construct the lifts (dotted arrows), note that £ = {—1 on « € X\Uy, and hence Ey, = Ej_; over
(X\Uyg) x I. Because E is trivialized over Uy, x I, so does over the restriction to each graphs that amount
to the union of homeomorphisms:

pe (X\Ug) x 1) By, P (Up x I) m Uy x I x R"

A
H ~|

il (X\U) X I) —— Ej_1 +—— pt (Ux x I) = Uy, x I x R™.

hj are trivially isomorphisms and the composition A, o---oh; is the desired bundle isomorphism. [J
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