Note on (p, q)-shuffles and its canonical order

stma

January 16, 2024

Notation. For $p \geq 1$, we denote by (p) the totally ordered set $(p)=\{1<2<\ldots<p\}$ of p elements, and $[p]$ the totally ordered set $[p]=\{0<1<\ldots<p\}$ of $p+1$ elements.

Notation. For any set $A \in$ Set, we denote by $\mathcal{S}(A)$ the symmetric (a.k.a. permutation) group of A.
Notation. We denote by Ord the category of partially ordered (pre-ordered) set as an object with the order preserving functions between them as the morphisms (it doesn't change any of the later arguments when the objects are taken to be a set of pre-ordered sets).

Definition. For $p, q \geq 1$, the (p, q)-shuffle $\operatorname{Shuffle}(p, q)$ is a subset of $\mathcal{S}((p+q))$ defined with the additional monotone property:

$$
\operatorname{Shuffle}(p, q)=\{\sigma \in \mathcal{S}((p+q)): \sigma(1)<\sigma(2)<\ldots<\sigma(p) \wedge \sigma(p+1)<\sigma(p+2)<\ldots<\sigma(p+q)\} .
$$

Notation. For $p, q \geq 1$, we denote by $\operatorname{Shuffle}_{s}(p, q)$ the set of all surjective monotone functions (surjective morphisms) $(p) \sqcup(q) \rightarrow(p+q)$ on Ord, where the coproduct is taken in the category.

Notation. For $p, q \geq 0$, we denote by $\operatorname{Shuffle}_{i}(p, q)$ the set of all injective monotone functions (injective morphisms) $[p+q] \hookrightarrow[p] \times[q]$ on Ord, where the product is taken in the category.

Note. Shuffle $s(p, q)$ has a structure of the partial order defined by

$$
\sigma \leq\left.\sigma^{\prime} \Longleftrightarrow \sigma\right|_{p}(k) \leq\left.\sigma^{\prime}\right|_{p}(k) \text { for all } 1 \leq k \leq p
$$

Proposition 1. There are bijections:

$$
\operatorname{Shuffle}(p, q) \approx \operatorname{Shuffle}_{s}(p, q) \approx \operatorname{Shuffle}_{i}(p, q)
$$

Proof. Proof of $\operatorname{Shuffle}(p, q) \approx \operatorname{Shuffle}_{s}(p, q)$
For $\sigma_{s} \in \operatorname{Shuffle}_{s}(p, q)$, the cardinalities of domain and codomain imply that σ_{s} indeed is a bijection with the monotone property; conversely, each element of $\operatorname{Shuffle}(p, q)$ defines the surjective monotone function on the coproduct $(p) \sqcup(q)$ by definition.

Proof of $\operatorname{Shuffl}_{s}(p, q) \approx \operatorname{Shuffl}_{i}(p, q)$
For $p, q \geq 1$ and $\sigma_{s} \in \operatorname{Shuffle}_{s}(p, q)$, define σ_{i} by

$$
\sigma_{i}(l)= \begin{cases}(0,0) & \text { if } l=0 \\ \sigma_{i}(l-1)+\left(\delta_{p}(l), \delta_{q}(l)\right) & \text { if } 1 \leq l \leq p+q\end{cases}
$$

where

$$
\delta_{r}(l)= \begin{cases}1 & \text { if } \sigma_{s}^{-1}(l) \in(r) \\ 0 & \text { otherwise }\end{cases}
$$

for $r=p, q$.
By definition, σ_{i} is an injective monotone function to the product order $[p] \times[q]$ such a way that σ_{i} is represented by an ordered sequence of pairs such as $\langle(0,0),(1,0),(1,1),(2,1), \ldots,(p, q)\rangle$, beginning from $(0,0)$, incrementing by one on either factor and ending to (p, q).

Let $\sigma_{i} \in \operatorname{Shuffl}_{i}(p, q)$ for $p, q \geq 1$. By definition of coproduct (in $\mathbf{O r d}$), we can define σ_{s} by a pair of monotone functions $\left.\sigma_{s}\right|_{p}:(p) \rightarrow(p+q)$ and $\left.\sigma_{s}\right|_{q}:(q) \rightarrow(p+q)$ that sum up to the induced surjective function σ_{s}.

Define $\left.\sigma_{s}\right|_{p}$ by

$$
\left.\sigma_{s}\right|_{p}(l)=\sigma_{i}^{-1}\left(l, m_{l}\right)
$$

for some $l \in(p)$ and $m_{l} \in[q]$ such that

$$
\begin{equation*}
\sigma_{i}^{-1}\left(l, m_{l}\right)=\sigma_{i}^{-1}\left(l-1, m_{l}\right)+1 . \tag{1}
\end{equation*}
$$

This is well-defined since for fixed $l \in(p)$, if (l, m) suffices (1) for some $m \in[q]$, then no $m^{\prime} \in[q]$ other than m has non-empty inverse images $\sigma_{i}^{-1}\left(l, m^{\prime}\right)$ and $\sigma_{i}^{-1}\left(l-1, m^{\prime}\right)$, by assumption of σ_{i} being injective monotone.

By defining $\left.\sigma_{s}\right|_{q}$ in the similar manner, we have the induced function

$$
\sigma_{s}=\left.\left.\sigma_{s}\right|_{p} \sqcup \sigma_{s}\right|_{q}:(p) \sqcup(q) \rightarrow(p+q)
$$

This is surjective since for each $k \in(p+q)$, there is $l \in(p)$ such that $\left.\sigma_{s}\right|_{p}(l)=k$ when $k \leq p$, and there is $l^{\prime} \in(q)$ such that $\left.\sigma_{s}\right|_{q}\left(l^{\prime}\right)=k$ when $p+1 \leq k$.
Corollary 1. The equivalences of Proposition 1 in Set can be made into the equivalences in Ord.
Proof. Observing that an element of $\operatorname{Shuffle}(p, q)$ is completely determined by the choice of orderinsensitive p elements out of $p+q$ elements, each (p, q)-shuffle $\sigma \in \operatorname{Shuffle}(p, q)$ is represented by an ordered tuple $\left\langle\sigma^{1}, \sigma^{2}, \ldots, \sigma^{p}\right\rangle$ with $\sigma^{k} \in(p+q)$ for $1 \leq k \leq p$, it is clear that $\operatorname{Shuffle}(p, q)$ yields the obvious partial order through the bijection compatible with that of $\operatorname{Shuffl}_{s}(p, q)$, namely $\sigma \leq \tau$ iff $\sigma^{k} \leq \tau^{k}$ for all k.

The corresponding order on $\operatorname{Shuffl} e_{i}(p, q)$ is analogously defined by $\sigma_{i} \leq \tau_{i}$ iff $\sigma_{i}^{(q, k)} \leq \tau_{i}^{(q, k)}$ for all $k \in[p+q]$, when we represent σ_{i} by the (truncated) $(p+q-1)$ tuple of pairs,

$$
\sigma_{i}=\left\langle\left(\sigma_{i}^{(p, 1)}, \sigma_{i}^{(q, 1)}\right),\left(\sigma_{i}^{(p, 2)}, \sigma_{i}^{(q, 2)}\right), \ldots,\left(\sigma_{i}^{(p, p+q-1)}, \sigma_{i}^{(q, p+q-1)}\right)\right\rangle
$$

where $\left(\operatorname{prj}_{r} \circ \sigma_{i}\right)(k)=\sigma_{i}^{(r, k)}, \sigma_{i}^{(r, 0)}=0$ and $\sigma_{i}^{(r, p+q)}=r$ for $r=p, q$.
This indeed yields an equivalence in Ord as in the following equations:

$$
\begin{array}{ll}
\sigma_{s} \leq \tau_{s} \text { in Shuffle }(p, q) & \Longleftrightarrow \\
\sigma_{s}^{k} \leq \tau_{s}^{k}, \forall k \in(p+q) & \Longleftrightarrow \\
\delta_{q}\left(\sigma_{s}^{k}\right) \leq \delta_{q}\left(\tau_{s}^{k}\right), \forall k \in(p+q) & \Longleftrightarrow \\
\sigma_{i}^{(q, k)} \leq \tau_{i}^{(q, k)}, \forall k \in[p+q] & \Longleftrightarrow \\
\sigma_{i} \leq \tau_{i} \text { in Shuffle }_{i}(p, q) . &
\end{array}
$$

References

[1] Kerodon. The Shuffle Product. https://kerodon.net/tag/00RF. Accessed: (Dec. 28). 2023.

