K-group and its fundamental product theorem

stma

January 28, 2024

2 Vector Bundle

2.8 Orientation

Definition. A frame of n-vector space $V \approx k^{n}$ is an n-tuple of ordered basis $\left\langle v_{1}, \ldots, v_{n}\right\rangle$.
Definition. The frame bundle of a given n-vector bundle $p: E \rightarrow B$ is an associated fiber bundle $F(E) \rightarrow B$ equipped with a set of frames as the model fiber.

Lemma 1. For a given n-vector bundle $p: E \rightarrow B$, the frame bundle $F p: F(E) \rightarrow B$ is a fiber bundle.
Proof. As a set, a set of frames of the model fiber k^{n} of E is identified with the general linear group of degree $n, \mathrm{GL}(n, k)$, hence we denote $F p^{-1}(x)=\mathrm{GL}(n, k)$. Furthermore, by identifying the model fiber k^{n} with the diagonal matrix $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in \mathrm{GL}(n, k)$, the frame bundle construction is viewed as a sort of fiber extension in a sense that (the image of) a transition map $g_{i j}: U_{i} \cap U_{j} \rightarrow \mathrm{GL}(n, k)$ of E is interpreted as a special case of left action

where $\gamma=1_{k^{n}}$ and $g=g_{i j}(x)$ in case of E. This shows that the local trivialization of $F(E)$ over $U \subset B$ is given as the extension in Top

The transition map $U_{i} \cap U_{j} \rightarrow \operatorname{Aut}(\mathrm{GL}(n, k))$ over (i, j)-coordinates of $F(E)$ is completely represented by the left action of topological group $\operatorname{GL}(n, k)$. This is because the action is free and transitive, making $F(E)$ so-called principle $\mathrm{GL}(n, k)$-bundle. In particular, $\operatorname{Aut}(\mathrm{GL}(n, k))$ can be replaced by $\mathrm{GL}(n, k)$.

Definition. A n-vector bundle $p: E \rightarrow B$ is called orientable if it admits an (ordered) n-tuple of local sections $s=\left\langle s_{1}, \ldots, s_{n}\right\rangle$ (i.e. a cocone $s: U \rightarrow \operatorname{GL}(n, k)$ in Top where $U: \Lambda \rightarrow \mathbf{T o p}$ is the assignment of coordinate charts from the set of indices) that is linearly independent in each fiber and suffices the following locally consistent property:

For any indices α, β of coordinate charts with $U_{\alpha} \cap U_{\beta} \neq \varnothing$, the diagram

$$
\begin{equation*}
U_{\alpha} \cap U_{\beta} \xrightarrow[\left\langle s_{1} \ldots s_{n}\right\rangle_{\alpha}]{\left\langle s_{1} \ldots s_{n}\right\rangle_{\beta}} \mathrm{GL}(n, k) \xrightarrow{\mathrm{sgn}}\{ \pm 1\} \tag{LCP}
\end{equation*}
$$

is a cofork.
Note. The orientability of a vector bundle can be defined by the existence of a family of local sections with (LCP), to the associated frame bundle.

2.9 Universal Bundle

For fixed $n \geq 0$, there is the universal vector bundle of dimension n, denoted by $E_{n} \rightarrow G_{n}$, by which every n-dimensional vector bundle over a chosen paracompact space X is obtained as the pullback of $X \rightarrow G_{n} \leftarrow E_{n}$.
Fact. For paracompact space X, the map $\left[X, G_{n}\right] \rightarrow \operatorname{Vect}_{n}(X),[f] \mapsto f^{*}\left(E_{n}\right)$, is a bijection $[1$, Theorem 1.16].

Note. There are several variants of above result. For instance the analogous result holds over the complex number field instead of the real number field, by setting G_{n} the spaces of n-dimensional \mathbb{C} linear subspaces $G_{n}(\mathbb{C})$. There are orientable versions, etc.

3 K-group

3.1 Group completion of a commutative monoid

There is the left adjoint to the forgetful functor $U: \mathbf{A b} \rightarrow \mathbf{C M o n}$, the free functor F, which gives rise to the existence of the canonical abelian group from a given commutative monoid, in the form of adjoint unit; whereas the fact does not allude any explicit construction of such abelian group, which is presented next.

Let M be a commutative monoid. Consider the canonical (commutative) monoid structure of the product $M \times M$, on which the equivalence relation \sim is defined by

$$
\left(m_{1}, m_{2}\right) \sim\left(n_{1}, n_{2}\right) \Longleftrightarrow \exists k \in M, m_{1}+n_{2}+k \approx n_{1}+m_{2}+k
$$

where the equivalence \approx is taken in M.
The quotient set $K(M)=(M \times M) / \sim$, for which we denote the equivalence class of $\left(m_{1}, m_{2}\right)$ by [m_{1}, m_{2}], yields the (abelian) group structure with the inverse element [m_{2}, m_{1}].

As the fractions analogously characterizes the equivalence and cancellation property employed in $K(M)$, it is justifiable to write $m_{1}-m_{2}$ for the place of [m_{1}, m_{2}]. In particular, $m_{1}-m_{2} \approx m_{1}+n-m_{2}+n$ holds for arbitrary $n \in M$ in general.

3.2 K-group of vector bundles

By restricting the class of concerned base spaces to the compact Hausdorff spaces, each vector bundle $E \rightarrow B$ admits the stable inverse, meaning that there exists a vector bundle $E^{\prime} \rightarrow B$ such that $E \oplus E^{\prime}$ is the trivial bundle [1, Proposition 1.4].

This property is required for defining reduced K-group, to be compatible with the relative theory that gives rise to the connection with the generalized cohomology theory; furthermore, Bott periodicity. So we assume that the base spaces are compact Hausdorff from here on, otherwise stated.

Moreover, we start investigating the objects with the fiber isomorphic to a vector space over complex number field, of locally constant dimensions. This assumption contains even dimensional real vector bundles for the restriction $\operatorname{Vect}_{\mathbb{C}}^{n}(X) \rightarrow \operatorname{Vect}_{\mathbb{R}}^{2 n}(X)$ of the fiber-wise multiplications being surjective, with regard to the canonical complex structure on $\mathbb{R}^{2 n}$ (i.e. $J\left(x_{1}, \ldots, x_{2 n}\right)=\left(-x_{2}, x_{1}, \ldots,-x_{2 n}, x_{2 n-1}\right)$). We mean by the fiber has locally constant dimensions that each fiber may differ with the dimension of isomorphic vector space.

With these in mind, we are introducing the construction of K-group (actually a ring) over a chosen compact Hausdorff space and its basic properties in the following line.

In this text, we are dealing with the first two out of three (blue boxes).

3.2.1 Ring construction

Definition. On a set of isomorphism classes of vector bundles (with locally constant dimensional fibers) Vect(B) over B, we denote stable isomorphic bundles by $E \approx_{s} E^{\prime}$ meaning that there exists some $n \in \mathbb{Z}$ such that $E \oplus \epsilon^{n} \approx E^{\prime} \oplus \epsilon^{n}$. We denote weakly stably isomorphic bundles by $E \sim E^{\prime}$ meaning that there exists some $n, m \in \mathbb{Z}$ such that $E \oplus \epsilon^{n} \approx E^{\prime} \oplus \epsilon^{m}$.

Note. The stable isomorphism and weakly stable isomorphism are equivalence relations on Vect(B), where the stable isomorphism is strictly stronger notion.

Fact. Over a compact Hausdorff space B, the stable isomorphism classes in Vect(B) yield commutative monoid structure $\left\langle\oplus, \epsilon^{0}\right\rangle$, while the weakly stable isomorphism classes, denoted by $\tilde{K}(B)$, yields an abelian group structure $\left\langle\oplus, \epsilon^{0}\right\rangle$.
Proposition 1. Over a compact Hausdorff space B, the group completion of the stable isomorphism classes in $\operatorname{Vect}(\mathrm{B})$ yields a commutative ring structure $\left\langle+,[E-E], \cdot,\left[\epsilon^{1}-\epsilon^{0}\right]\right\rangle$, denoted by $K(B)$, with a ring isomorphism

$$
K(B) \cong \tilde{K}(B) \oplus \mathbb{Z}
$$

Furthermore, $\tilde{K}(B)$ admits a commutative (non-unital) ring structure $\langle\oplus,[E], \cdot\rangle$ with the induced multiplication from $K(B)$.

Proof. The operations are defined as followings on $K(B)$.
(addition)

$$
\left[E-E^{\prime}\right]+\left[F-F^{\prime}\right]=\left[E \oplus F-E^{\prime} \oplus F^{\prime}\right]
$$

(multiplication)

$$
\begin{aligned}
{\left[E-E^{\prime}\right] \cdot\left[F-F^{\prime}\right] } & =\left[E \otimes F-E^{\prime} \otimes F\right]+\left[E^{\prime} \otimes F^{\prime}-E \otimes F^{\prime}\right] \\
& =\left[E \otimes F-E \otimes F^{\prime}\right]+\left[E^{\prime} \otimes F^{\prime}-E^{\prime} \otimes F\right] .
\end{aligned}
$$

In the definition of the multiplication, the second and the third term are equivalent. The operations are both well-defined. While we are not giving here full expositions with regard to ring properties, some of them are shown as followings.

$$
\begin{aligned}
& \text { (additive unit) } \quad\left[E-E^{\prime}\right]+\left[E^{\prime \prime}-E^{\prime \prime}\right]=\left[E \oplus E^{\prime \prime}-E^{\prime} \oplus E^{\prime \prime}\right]=\left[E-E^{\prime}\right] \\
& \text { (multiplicative unit) } \quad\left[E-E^{\prime}\right] \cdot\left[\epsilon^{1}-\epsilon^{0}\right]=\left[E \otimes \epsilon^{1}-E^{\prime} \otimes \epsilon^{1}\right]+\left[E^{\prime} \otimes \epsilon^{0}-E \otimes \epsilon^{0}\right]=\left[E-E^{\prime}\right] \\
& \text { (distributive) } \quad\left[E_{1}-E_{1}^{\prime}\right] \cdot\left(\left[E_{2}-E_{2}^{\prime}\right]+\left[E_{3}-E_{3}^{\prime}\right]\right)=\left[E_{1}-E_{1}^{\prime}\right] \cdot\left[E_{2}-E_{2}^{\prime}\right]+\left[E_{1}-E_{1}^{\prime}\right] \cdot\left[E_{3}-E_{3}^{\prime}\right]
\end{aligned}
$$

To see the ring isomorphism, observe that the function

$$
\psi: K(B) \rightarrow \tilde{K}(B) ; \quad\left[E-\epsilon^{m}\right] \mapsto[E] ;
$$

is a surjective ring homomorphism with the kernel of the form $\left[\epsilon^{n}-\epsilon^{m}\right]$, which is enumerated by $n-m$, isomorphic to \mathbb{Z}. There is the left inverse of $\mathbb{Z} \ni n \mapsto\left[\epsilon^{n}-\epsilon^{0}\right] \in K(X)$ given by a restriction $\left[E-\epsilon^{m}\right] \mapsto$ $\left[\left.E\right|_{b_{0}}-\left.\epsilon^{m}\right|_{b_{0}}\right] \in K\left(b_{0}\right)$ to some point $b_{0} \in B$. The function defined by

$$
\eta: \tilde{K}(B) \rightarrow K(B) ; \quad[E] \mapsto\left[E-\left.E\right|_{b_{0}}\right] ;
$$

is a right inverse of ψ, for a fixed $b_{0} \in B$, hence we have a split exact sequence:

$$
\mathbb{Z} \approx K\left(b_{0}\right) \longleftrightarrow K(B) \underset{\psi}{\leftrightarrows} \tilde{K}(B)
$$

depending on the choice of b_{0}.
The multiplication in $\tilde{K}(B)$ is defined with respect to the following diagram:

To make the diagram commute (up to the equivalence), it is explicitly defined by:

$$
[E] \cdot\left[E^{\prime}\right]=\left[E E^{\prime} \oplus \overline{\left.\left.E\right|_{b_{0}} E^{\prime} \oplus E^{\prime}\right|_{b_{0}} E}\right]
$$

where \bar{E} denotes a stable inverse of E.
For each map $f: X \rightarrow Y$, the induced map $f^{*}: \tilde{K}(Y) \rightarrow \tilde{K}(X)$ is a ring homomorphism since

1. $f^{*}\left(E \oplus E^{\prime}\right)=f^{*}(E) \oplus f^{*}\left(E^{\prime}\right)$ up to isomorphism;
2. $f^{*}\left(E \otimes E^{\prime}\right)=f^{*}(E) \otimes f^{*}\left(E^{\prime}\right)$ up to isomorphism;
3. $f^{*}(\bar{E})=\overline{f^{*}(E)}$ up to weakly stable isomorphism.
hold.

Note. Above exact sequence implies that $K(B)$ decomposes into the two sub-modules (ideals) \mathbb{Z} of unital component and $\tilde{K}(B)$ of non-unital one, which account for a "stably trivial dimension" (of the negative factor) and a "stably non-trivial twist" of the class of bundles, respectively.

3.2.2 External product

An external product can be defined by

$$
\mu: K(X) \otimes K(Y) \rightarrow K(X \times Y) ; \quad a \otimes b \mapsto p_{X}^{*}(a) \cdot p_{Y}^{*}(b)
$$

Lemma 2. μ is a ring homomorphism.
Proof. The basic properties ($P B P$) of pullback induced maps immediately deduce that μ is a homomorphism of an abelian group. As a map from a ring of tensor product of rings, it holds that

$$
\begin{aligned}
\mu\left((a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)\right) & =\mu\left(a a^{\prime} \otimes b b^{\prime}\right) \\
& =p_{X}^{*}\left(a a^{\prime}\right) \cdot p_{Y}^{*}\left(b b^{\prime}\right) \\
& =p_{X}^{*}(a) \cdot p_{Y}^{*}(b) \cdot p_{X}^{*}\left(a^{\prime}\right) \cdot p_{Y}^{*}\left(b^{\prime}\right) \\
& =\mu(a \otimes b) \cdot \mu\left(a^{\prime} \otimes b^{\prime}\right) .
\end{aligned}
$$

In a homotopy theoretic argument of the canonical line bundle $H \rightarrow \mathbb{C} P^{1} \cong S^{2}$ [1, Example 1.13], the homotoped clutching functions $f, g: S^{k-1} \rightarrow \mathrm{GL}_{2 n}(\mathbb{C})$ yield the bundle isomorphism

$$
(H \otimes H) \oplus \epsilon^{1} \approx H \oplus H
$$

which is interpreted as $(H-1)^{2}=0$ in the image of ring homomorphism $\mathbb{Z}[H] \rightarrow K\left(S^{2}\right)$, inducing a ring homomorphism $\lambda: \mathbb{Z}[H] /(H-1)^{2} \rightarrow K\left(S^{2}\right)$.

Fact. (The fundamental product theorem of K-group)
The composition

$$
\xi: K(X) \otimes \mathbb{Z}[H] /(H-1)^{2} \xrightarrow{1 \otimes \lambda} K(X) \otimes K\left(S^{2}\right) \xrightarrow{\mu} K\left(X \times S^{2}\right)
$$

is an isomorphism of rings for all compact Hausdorff spaces X [1, Theorem 2.2].

References

[1] A. Hatcher. Vector Bundles and K-Theory. http://www.math.cornell.edu/~hatcher. 2003.

