Note on Laplace transform and its uniqueness

stma

March 30, 2024

Definition. A function $f: X \rightarrow Y$ from a subspace of \mathbb{R} is called piecewise continuous if there exists a family of disjoint open intervals $\left\{V_{n}\right\}_{n}$ such that f is continuous on V_{n} for all n and $X-\bigcup_{n} V_{n}$ is a discrete subspace of X.

Note. Because \mathbb{R} is second-countable, the same holds for every subspaces, hence the difference $\mathbb{R}-\bigcup_{n} V_{n}$, on which f may be discontinuous, is discrete countable.

Lemma 1. A bounded discrete subspace D of \mathbb{R} is a finite set.
Proof. Since D is countable, we can assume D is a sequence of real numbers $\left\{x_{n}\right\}_{n \geq 1}$ with $x_{n} \neq x_{m}$ if $n \neq m$.

Let us define a subset of D by

$$
D(n)=\left\{x_{m} \in D \mid 1 \leq m<n\right\} .
$$

If D is infinite, the maximal distance to a subset $d_{n}=\inf _{k \leq n} \sup _{y \in D(k)}\left|x_{k}-y\right| \leq A$ is decreasing that limits to zero when $n \rightarrow \infty$. This implies that D contains some accumulation point, contradicts to D being discrete.

Corollary 1. A piecewise continuous function $f: B \rightarrow Y$ from a bounded domain $B \subset \mathbb{R}$ admits utmost finite number of discontinuous points.

Proof. Trivial.
Definition. A function $f:[v, \infty) \rightarrow \mathbb{R}$ is called of exponential order if there exists $c, A \in \mathbb{R}$ and $M \in \mathbb{R}_{\geq 0}$ such that $\left|f(t) / e^{c t}\right| \leq M$ for all $t>A$.

Definition. A Laplace transform $\mathcal{L} f$ of a function $f:[0, \infty) \rightarrow \mathbb{R}$ is the integral defined by

$$
\mathcal{L} f=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Note. The Laplace transform $\mathcal{L} f(s)$ is a function of $s \in U$ for some open set $U \subset \mathbb{R}$ if the integral converges absolutely.

Proposition 1. A piecewise continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ of exponential order admits a Laplace transform $\mathcal{L} f(s)$ on $s>c$ for some $c \in \mathbb{R}$.

Proof. By assumption, there exists $c, A \in \mathbb{R}$ and $M \in \mathbb{R}_{\geq 0}$ such that the following inequalities hold.

$$
\begin{aligned}
|\mathcal{L} f| & \leq \int_{0}^{\infty}\left|e^{-s t} f(t)\right| d t \\
& \leq \int_{0}^{A} e^{-s t}|f(t)| d t+M \int_{A}^{\infty} e^{-(s-c) t} d t \\
& <\infty \quad(s>c)
\end{aligned}
$$

The first integral is finite because the continuous integrand $\left|e^{-s t} f(t)\right|$ yields finite integral on each subinterval, amounts to a finite value over the finite number of subintervals of $[0, A]$, by Corollary 1 . The second integral is calculated to be $\frac{M}{s-c} e^{(s-c) A}$.

Fact 1. (Weierstrass approximation theorem) Suppose f is a continuous real-valued function defined on the real interval $[a, b]$. For every $\epsilon>0$, there exists a polynomial p such that for all $x \in[a, b]$, we have $|f(x)-p(x)|<\epsilon$.
Theorem 1. (Uniqueness of Laplace transform) Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ be two piecewise continuous functions of exponential order such that $\mathcal{L} f(s)=\mathcal{L} g(s)$ for all $s>c$. Then $f(t)=g(t)$ at all t where both are continuous.

Proof. Due to the linearity of Laplace transform, namely $\mathcal{L} f(s)-\mathcal{L} g(s)=\mathcal{L}(f-g)(s)$, it suffices to show that $f(t) \equiv 0$ if $\mathcal{L} f(s) \equiv 0$. Furthermore, we put $s=s_{0}+n+1$ for some fixed $s_{0}>c$ (we don't need to exploit all possible $s>c$ in order to deduce $f(t) \equiv 0$ at all t where f is continuous) and $n \in \mathbb{Z}_{\geq 0}$ that we have:

$$
\begin{aligned}
\mathcal{L} f(s) & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{1} u^{n} u^{s_{0}} f(-\log (u)) d u \quad\left(u=e^{-t}, n \in \mathbb{Z}_{\geq 0}\right) \\
& =0
\end{aligned}
$$

Put

$$
\beta(u)=u^{s_{0}} f(-\log (u)) \quad(0 \leq u \leq 1)
$$

Then,

$$
\begin{equation*}
\int_{0}^{1} u^{n} \beta(u) d u=0 \quad\left(n \in \mathbb{Z}_{\geq 0}\right) \tag{2}
\end{equation*}
$$

and it turns out that $\beta(1)=f(0)$ by virtue of f being continuous around 0 , and

$$
\lim _{u \rightarrow+0} \beta(u)=\lim _{t \rightarrow \infty} e^{-s_{0} t} f(t)=\lim _{t \rightarrow \infty} O\left(e^{-\left(s_{0}-c\right) t}\right)=0
$$

hence β is piecewise continuous on $[0,1]$.
Applying Fact 1 , for arbitrary $\epsilon_{j}>0$, we have a sequence of polynomials p_{1}, \ldots, p_{m} such that

$$
\left\|\left.\beta\right|_{V_{j}^{\prime}}-p_{j}\right\|<\epsilon_{j}, 1 \leq j \leq m
$$

where $\left\{V_{j}^{\prime}\right\}$ are disjoint open sets of $[0,1]$ on which β is continuous.
By setting $p=\sqcup_{j} p_{j}:[0,1] \rightarrow \mathbb{R}$, assigning $p(d)=0$ to each discontinuous point $d \in(0,1)$ if necessary, we have $\int_{0}^{1} p(u) \beta(u) d u=0$ from (2) and the linearity of integral.

Put $\epsilon=\sum \epsilon_{j}$, it follows that

$$
\begin{align*}
\int_{0}^{1}|\beta(u)|^{2} d u & =\int_{0}^{1}|\beta(u)(\beta(u)-p(u))| d u \\
& =\sum_{j=1}^{m} \int_{V_{j}^{\prime}}\left|\beta(u)\left(\beta(u)-p_{j}(u)\right)\right| d u \tag{3}\\
& \leq \epsilon \int_{0}^{1}|\beta(u)| d u
\end{align*}
$$

Because ϵ is arbitrary,

$$
|\beta(u)|^{2}=\int_{0}^{u}|\beta(v)|^{2} d v \leq \int_{0}^{1}|\beta(u)|^{2} d u \equiv 0
$$

holds for any continuous point $u \in[0,1]$, the claim follows.

References

[1] David Vernon Widder. Laplace transform (PMS-6). Princeton university press, 2015.

