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Given a (pre-) measure space (X,A , µ) (i.e. think of A a ring of sets when we see µ a pre-measure),
consider the following condition about A ⊂ X.

∀B ∈ A , B = (B ∩A) ∪ (B ∩Ac). (1)

The condition (1) gives the sufficient condition for A to satisfy the Carathéodory condition (i.e.
equivalently A being µ-measurable), namely,

∀B ∈ A , µ(B) = µ(B ∩A) + µ(B ∩Ac). (2)

The following implication is shown to be true if A,B ⊂ X both are µ-measurable.

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B). (3)

This identity (3) is, as seen in many literatures written in relatively mathematical point of view,
amongst all such measure theoretic introduction, often to be paid less attention despite its practical
importance arise in such fields of statistics and applied probability theory.

This fundamental identity provides with a key ingredient to formulate and/or solve some real prob-
lems, where the probability of either union or intersection of events are difficult to determine.

In what follows, we’ll prove a generalized form of the equation (3) known as inclusion-exclusion
identity, in a relatively elementary approach.

Theorem 1. Let (X,A , µ) be a measure space. For each family of sets {Aj}j≤n ⊂ A , the following
identity holds:

µ(∪n
j Aj) =

n∑
k=1

∑
σ∈sh(k,n−k)

(−1)k−1µ(Aσ(1) ∩ . . . ∩Aσ(k)). (4)

The element σ ∈ sh(k, n − k) iterates through (k, n − k)-shuffles so that each σ is thought of as a
monotone function from {1 < . . . < k} with 1 ≤ σ(1) < σ(2) < . . . < σ(k) ≤ n.

For convenience, we express (4) by the linear combination of

Sk =
∑

σ∈sh(k,n−k)

µ(Aσ(1) ∩ . . . ∩Aσ(k)).

Proof. Let Ek be the set of all sample points that are contained in exactly k of the events A1, . . . , An,
and for each σk ∈ sh(k, n− k), we define:

Aσk =
⋃
j ̸∈σk

Aj ,

Aσk
=

k⋂
j=1

Aσk(j),

where j ̸∈ σk stands for j ̸∈ σk({1, . . . , k}).
By definition, it is immediate to see

n⋃
j

Aj =

n⊔
k=1

Ek. (5)
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For each σk ̸= σ′
k, (Aσk

−Aσk)∩ (Aσ′
k
−Aσ′

k) = ∅ since if Aσk
∩Aσ′

k
̸= ∅, there is some l ∈ {1, . . . , k}

such that Aσk(l) ⊂ Aσ′
k , then we have

Ek =
⊔

σk∈sh(k,n−k)

(Aσk
−Aσk).

Now the following calculation is justified.

µ(∪n
k=1Ak) =

n∑
k=1

µ(Ek)

=

n∑
k=1

∑
σk∈sh(k,n−k)

µ(Aσk
−Aσk)

=

n∑
k=1

(
Sk −

∑
σk∈sh(k,n−k)

µ(Aσk
∩Aσk)

)
.

(6)

Assume (4) holds till (n− 1). By induction, µ(Aσk
∩Aσk) has a form

µ(Aσk
∩Aσk) =

∑
j ̸∈σk

µ(Aσk
∩Aj)

−
∑

j1,j2 ̸∈σk;j1<j2

µ(Aσk
∩Aj1 ∩Aj2)

+ . . .

+ (−1)n−kµ(Aσk
∩Aj1 ∩ . . . ∩Ajn−k

).

Taking a close look at the all terms of the form µ(Aσk
∩Aj1 ∩ . . . ∩Ajt) for each 1 ≤ t ≤ n− k, it is

shown that these terms amount to (−1)t
(
k+t
k

)
of Sk+t’s in

∑
σk

µ(Aσk
∩Aσk).

Together with (6), we have

µ(Ek) =

n−k∑
j=0

(−1)j
(
k + j

k

)
Sk+j . (7)

Summing (7) over 1 ≤ k ≤ n, we can find ck such that
∑n

k=1 µ(Ek) =
∑n

k=1 ckSk. These ck is
calculated as

ck =

k−1∑
j=0

(−1)j
(

k

k − j

)

=

k−1∑
j=0

(−1)j
(
k

j

)

= (−1)k+1 +

k∑
j=0

(−1)j
(
k

j

)
= (−1)k+1,

the claim follows.
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