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1 Introduction

A set of principles, with respect to the data reduction, prescribe the use of statistical instruments to
reduce the data prior to the inference of an unknown parameter θ, more or less without loss of nice
properties such as accuracy, precision, robustness and so on. Although the concept sounds appealing
and still remain the theoretical importance as its own right, the interest have been lessened in the
descriptive statistics.

The concept dated back in early 1920’s, at least when they became prominent. Fisher had contributed
wide range of foundations in the context, especially first introduced the Sufficiency Principle, Birnbaum
is known for Likelihood Principle, and Pitman for Equivariance Principle.

Since the statements can be formulated with a set of experiments on which a specific common pa-
rameter is estimated, we first introduce the definition of experiment.

Formally, a statistical experiment is composed of a triple E = (X, θ, {f(x | θ) | θ ∈ Θ}) such that

� X is a random vector together with the underlying sample space,

� θ is the (possibly vector valued) parameter to which an inference is made,

� {f(x | θ) | θ ∈ Θ} is the θ-parameterized family of probability distributions in which an experi-
menter will expect to find a “true” distribution that X should follow.

Since much of our concern involve the identification of ”inferential processes”, we further assume that
a statistical experiment includes a pair ⟨T, S⟩ of transformation T and estimator S, which gives rise to
what the evidence of inference should be.

Before move on to the full exposition of so called principle of data reduction, one need to identify the
experimental procedure on which a data reduction method can apply, as Figure 1 shows.

Figure 1: A design of statistical experiment

A scheme of experiment, generally being specified to constitute the experimental design, is implicit
here because it complicates the overall story of data reduction. The scheme, of course, is significantly
important that defines a set of rules and criterion that attest the sample validity and the credibility of
estimated output; the acceptable degree of errors is one of such.

The Table 1 shows the three types of principles of data reduction, together with the statistical
instruments employed to reduce the data.
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Name Definition Formal definition Statistical instru-
ments

Sufficiency Principle If T (X) is a sufficient
statistic for θ, then any
inference about θ should
depend on the sample X
only through the value
T (X). That is, if x and
y are two sample points
such that T (x) = T (y),
then the inference about
θ should be the same
whether X = x or X = y
is observed.

Consider experiment
E = (X, θ, S ◦ T, {f(x |
θ)}) and suppose T (X)
is a sufficient statistic
for θ. If x and y are
sample points satisfy-
ing T (x) = T (y), then
EvS(E, x) = EvS(E, y).

� (Minimal) Suffi-
cient statistic

� Complete statistic

� Ancillary statistic

Likelihood Principle If x and y are two sample
points such that L(θ | x)
is proportional to L(θ |
y), that is, there ex-
ists a constant C(x, y)
such that L(θ | x) =
C(x, y)L(θ | y) ∀θ, then
the conclusions drawn
from x and y should be
identical.

Suppose that we have
two experiments, E1 =
(X1, θ, {f1(x1 | θ)}) and
E2 = (X2, θ, {f2(x2 |
θ)}), where the un-
known parameter θ
is the same in both
experiments. Suppose
x∗
1 and x∗

2 are sample
points from E1 and E2,
respectively, such that
L(θ | x∗

2) = CL(θ | x∗
1)

for all θ and some con-
stant C that may depend
on x∗

1 and x∗
2 but not

θ. Then Ev(E1, x
∗
1) =

Ev(E2, x
∗
2).

� Likelihood func-
tion

Equivariance Principle If Y = g(X) is a
change of measurement
scale such that the model
for Y has the same
formal structure as the
model for X, then an in-
ference procedure should
be both measurement
equivariant and formally
equivariant.

N/A

� Group of transfor-
mations

Table 1: Principles of data reduction
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The Formal Likelihood Principle can be expressed in terms of Formal Sufficiency Principle together
with the additional condition with respect to the experimental design, called Conditionality Principle,
and vice verca, due to the following Birnbaum’s theorem.

Figure 2: Schematic figure of Birnhaum’s Theorem

Theorem 1. The Formal Likelihood Principle follows from the Formal Sufficiency Principle and the
Conditionality Principle. The converse is also true. [1]

2 Caveat on the use of terms

We should be alerted that the definition of (statistical) experiment may vary in the contexts, as well as
the evidence function, denoted Ev.

The evidence function, either not well defined or not to be formulated, needs the specified measure
of “evidence” to be mathematically well-defined, while the interpretation of Ev is clear, i.e. the most
likely, plausible, probable or reasonable conclusion about the concerned parameter inferred from the
given sample against the experimental model.

3 Examples

3.1 Sufficiency Principle

For a series of discrete uniform random variables X1, . . . , Xn ∼ u(1, θ), T (X) = maxi Xi is a sufficient
statistic for θ. For the unbiased continuous estimator, we need T (X) = n+1

n maxi Xi.
To make a conclusion about the population from the given sample, if the median u1/2 is larger than

certain value for instance, we only need to check the maximum of the sample.

3.2 Likelihood Principle

Suppose X ∼ B(12, θ), Y ∼ NB(3, θ). Then L(θ | X = 3) = 220θ3(1 − θ9) and L(θ | Y = 12) =
55θ3(1− θ9).

We may then want to prescribe the experiment of Y – number of Bernoulli trials to make 3 successes
– to be relatively insignificant at the value of Y = 12, hence choose to do for X at the value of X = 3
instead.

3.3 Equivariance Principle

The set of binomial pmfs {f(X,n | θ) | θ ∈ Θ} is invariant under the group G = {(id : X 7→ X), (g : X 7→
n −X)}, since the transformed random variable Y = n −X follows B(n, θ), the same formal structure
as before.

For a fixed estimator S(X) of the success probability θ, we may prescribe that the equation S(X) =
1− S(n−X) holds, where we only need to investigate the estimates of S(0), S(1), . . . , S([n/2]).

In general, we can also describe the Equivariance Principle in terms of the following commutative
diagram, where χ is a family of distributions parameterized by θ (cf. equivalently, a set of random
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variables that follow the distributions), E a set of estimators for θ′ ∈ Θ, and ρ assigns an estimator to
each distribution from which the estimator has been derived.

χ χ X n−X

E E S(X) 1− S(X) = S(n−X)

ρ

g

ρ ρ

g

ρ

g∗ g∗

Note that the prescription of Equivariance Principle requires the invariance of the model under the
group of transformations defined as follows.

Definition. Let F = {f(x | θ) | θ ∈ Θ} be a statistical model, i.e. a set of pdfs or pmfs for X in the
specified form, and let G be a group of transformations of the sample space χ. The model F is invariant
under the group G if ∀θ ∈ Θ,∀g ∈ G,∃!θ′ ∈ Θ such that Y = g(X) ∼ f(y | θ′) if X ∼ f(x | θ).

Hence the diagram on the right-hand side makes sense since the transformation of a random variable
determines the unique parameter, for which the corresponding estimator is uniquely derived by the
transformation.
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