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1 Introduction

There seemingly quite a few recognized applications found with Central Limit Theorem, as well being
foundation of an experimental structure in science.

The intuition gives us the way of transition from ”sample” to ”population”, where finiteness and
practicality characterize the sample that falls in as the hands-on data of analysis at a laboratory; whereas
infinite (in the sense of obscurity), theoretical features are the key for population.

Although what sample represents vary in the experimental setting, the basic idea claims that suffi-
ciently large number of samples are averaged to a law of so called normal distribution, as in the figure

1, where the averaged value
∑N

i Xi

N of N dices have ”regulated” probability that takes real numbers
between 1 and 6 (i.e. called probability density), no matter what probability law ordered the
distribution of original value Xi to follow (i.e. for dice roll, we assume each Xi obeys the discrete
uniform distribution).

Note. While in theory, the distribution of averaged N -dices must be centred at zero by transition to
attain genuine normal distribution, we can still see some normalizing phenomena (around the mean)
without centralization as in figure 2. In practice, the actual distribution may turn out to be ambiguous,
depending on the randomized process.
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Figure 1: The mean value of N dices tends to normal distribution after translation
√
n(X−µ)

σ

Figure 2: The mean value of N dices tends to non-normal distribution without zero-centred assumption
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2 Definitions

2.1 Triangular Array

Definition. (triangular array) For each n ∈ N, a sequence Xn1, . . . , Xnrn of independent random vari-
ables is called triangular array of random variables, when they have distinct probability space for the
sequence depending on n.

Note. (mean finiteness implication) In convention, a random variable X with finite variance admits
finite mean, namely

Var[X] < ∞ =⇒ E[X] < ∞.

In a probability space (Ω,F , P ), a random variable X is defined as a F-measurable real-valued
function; accordingly, the expected value is defined as

E[X] =

∫
Ω

XdP =

∫
ω∈Ω

X(ω)P (dω).

Therefore, when we say X has finite variance, it is determined as a finite value

Var[X] = E[(X − E[X])2] =

∫
Ω

(X − µ)2dP =

∫
ω∈Ω

(X(ω)− µ)2P (dω),

provided that E[X] = µ is finite; otherwise we have

Var[X] = E[X2]− µ2 = E[X2]−∞ < ∞,

which contradicts a widely recognized convention that (∞−∞) is undefined.
Note that this is not a matter of triviality, but is thought of a foundational convention in the domain

(c.f. divided by zero convention).

2.2 Independent and identically distributed Random Variables

Definition. (i.i.d. random variables) A sequence of random variables are said to be independently
distributed if the corresponding distributions do not depend on each other. They are said identically
distributed if the distributions are identical.

2.3 Convergence Concepts

There are three of widely used convergence concepts within the statistical context: almost surely (a.k.a.
strong), in probability and in distribution (a.k.a. weak), from stronger to weaker (i.e. the former implies
later, accordingly).

Definition. (convergence in distribution) A sequence of random variables X1, . . . converges in distribu-
tion (converges weakly) to a random variable X if

lim
n→∞

FXn(x) = FX(x)

at all continuous points of FX(x). We denote the convergence by FXn
⇒ FX , or even Xn ⇒ X if there

is no confusion.

This is a special case of weak convergence of measures, where FXn , FX account for the (probability)
measures.

Example. Let U1, U2, . . . , Un be a series of i.i.d. random variables with standard uniform distribution
(i.e. Ui ∼ unif(0, 1)).

Define

Ẑn,t =
1

n

n∑
i=1

IYi≤t, t ≥ 0,

where λ > 0 fixed and Yi = −λ log(1− Ui).
Then we see that lim

n→∞
Ẑn,t ∼ exp(λ) as in the figure 3 shows (this actually converges almost surely,

and hence converges in probability).
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Figure 3: A process of fitting empirical density to exp(λ)

Definition. (convergence in probability) A sequence of random variables, X1, X2, . . . converges in prob-
ability to a random variable X if, for all ϵ > 0,

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0 = 1− lim
n→∞

P (|Xn −X| < ϵ)

Definition. (almost sure convergence) A sequence of random variables, X1, X2, . . . , converges almost
surely to a random variable X if, for all ϵ > 0,

P ( lim
n→∞

|Xn −X| < ϵ) = 1 = 1− P ( lim
n→∞

|Xn −X| ≥ ϵ)

Example. (converge in probability, not almost surely) For each 1 ≤ m ∈ N, we can uniquely assign an
indicator function Im defined by

Im = I
[
m mod τ(nm)

nm
,
1+(m mod τ(nm))

nm
]

such that τ(nm) ≤ m < τ(nm + 1) holds, where τ(n) = (n2 − n+ 2)/2.
For example, I1 = I[0,1], I2 = I[0,1/2], I3 = I[1/2,1], I4 = I[0,1/3], and so on.
Because nm can be defined by nm = argmaxn∈Lm

τ(n) with Lm = {n ∈ N | τ(n) ≤ m}, the bigger m
becomes the smaller the width 1/nm of interval on which Im takes non-zero value becomes.

Hence the sequence of random variables Xm(s) = s+ Im(s) converges to X(s) = s in probability, but
not almost surely (i.e. we can always find some m′ such that Im′(s) = 1, periodically).

If we take the subsequence of random variables, say X ′
m(s) = s + Iτ(m)(s), this indeed converges

almost surely to X.

2.4 Stable distribution

The concept of stability gives a notion of algebraic operations on random variables closed in a probabilistic
model.

Definition. (degenerate distribution) A distribution is degenerate if the support is singleton.
A non-degenerate distribution is that of not degenerate.
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Table 1: required conditions for each version

conditions
Independence Identical

distribution
mean finite-
ness

variance
finiteness

Lindeberg
condition

Generalized
condition

Classical
setting

o o canonical o canonical -

Lindeberg
version

o x canonical o o -

Generalized
version

o o o x - o

Note. Since we are concerned only with univariate distribution, this definition is sufficient.

Definition. (stable distribution, [VI-1, Definition 1, 2]) Let X,X1, X2, . . . be i.i.d. random variables
with a common distribution F and Sn = X1 + . . .+Xn.

The distribution F is stable if F is non-degenerate, and for all n ∈ N, there exists cn, γn ∈ R with
cn > 0 such that

Sn
d
= cnX + γn,

where
d
= means the equivalence of the distribution.

The distribution is said to be strictly stable if this holds with γn = 0.

Note. How pairs (cn, γn) are assigned is worth to pay attention — it says that the pair exists for each
n (and the corresponding Sn, not individual Xi).

Theorem 1. ([VI-1, Theorem 1, 2]) Let F be a stable distribution. The norming constants are of the
form cn = n1/α with 0 < α ≤ 2. The constant α will be called the characteristic exponent of F .

One can call a stable distribution of the characteristic exponent α by α-stable distribution for short.

Proof. We omit the proof. Follow the reference.

2.5 Domain of attraction

Definition. Let X1, X2, . . . are sequence of i.i.d. random variables with common distribution F .
The distribution F belongs to the domain of attraction of non-degenerate distribution G if there exist

constants an > 0 and bn such that the distribution of a−1
n

∑n
j Xj − bn tends to G; in other words

a−1
n

n∑
j

Xj − bn ⇒ G

holds.

3 The Weak Law of Large Numbers (WLLN)

Theorem 2. Let X1, X2, . . . be i.i.d. random variables with EXi = µ and VarXi = σ2 < ∞, then for
all ϵ > 0, sample mean converges to population mean in probability, namely:

lim
n→∞

P (|Xn − µ| < ϵ) = 1.

4 Conditions for the CLT

In classical setting, Lindeberg condition is derived from an identically distributed sequence (i.e. not
necessarily triangular array) of random variables, where we assume

Xnk = Xk, rn = n, 1 ≤ k ≤ n.

Then the condition is reduced to
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∀ϵ > 0,

n∑
k=1

1

σ2

∫
|Xk|≥ϵ

√
nσ

X2
k dP ≤

∫
|Xk|≥ϵ

√
nσ

dP
n→∞−−−−→ 0,

which is canonical because Xk is constant against n.
In contrast, when we relax the previous condition by setting rn = n, 1 ≤ k ≤ n as Xnk may belong

to its own probability space, being understood that Xnk are i.i.d. over k ≤ n for each n, we see that
Lindeberg is not canonical anymore.

In this case, the Lindeberg condition is expressed as

∀ϵ > 0,

∫
|Xnk|≥ϵ

√
nσn

dp
n→∞−−−−→ 0,

or more concisely |Xnk| = o(
√
nσn) in Landau’s notation, implying that the ratio |Xnk|/σn is o(

√
n).

This is the case when for sufficiently large n, any individual contribution of Xnk to the variance σn

are uniformly suppressed.
For classical and Lindeberg, the following condition must be met in common.

E[Xnk] = 0, σ2
nk = E[X2

nk], s2n =

rn∑
k=1

σ2
nk (1)

For a concise overview of conditions, see table 1.

4.1 Independence and identity of distributions

Only under Lindeberg assumption, do the random variables require to be identically distributed; namely,
it accepts the case when FXnk

̸= FXn′k′ , for some n, n′, k, k′.

4.2 Finite Variance

Only the Generalized condition tolerate infinite variance.

4.3 Lindeberg Condition

Definition. (Lindeberg condition) Lindeberg version of CLT requires that the following equation holds
in addition to the condition (1).

lim
n→∞

rn∑
k=1

1

s2n

∫
|Xnk|≥ϵsn

X2
nk dP = 0

for any ϵ > 0.

The Lindeberg condition is important since it ensures asymptotically tamed behaviour in a way that
the sum of independent random variables doesn’t ”blow up”, preventing the condition of CLT from
violated.

4.4 Generalized Condition

Although Generalized Central Limit Theorem can be regarded as a variant of CLT, unlike Lindeberg’s,
it is not straightforward to interpret the GCLT in terms of ”condition-statement” format where the
statement requires standard normal distribution to be attained; that is where GCLT generalizes.

Rather, since normal distribution corresponds to a Lévy 2-stable, we offer the following as the con-
dition.

Definition. (Generalized condition) Let X1, . . . be i.i.d. sequence of random variables and Z be a
non-degenerate random variable.

The GCLT requires Z to be α-stable for some 0 < α ≤ 2.
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5 The Central Limit Theorem

5.1 Statement of the Theorem

Theorem 3. (classical CLT) Suppose that {Xn} is an independent sequence of random variables having
the same distribution with mean c and finite positive variance σ2. If Sn = X1 + · · ·+Xn, then

Sn − nc

σ
√
n

⇒ N(0, 1).

where ⇒ denotes the convergence in distribution.

Theorem 4. (Lindeberg CLT,[Theorem 27.2, 1])
Suppose that for each n the sequence Xn1, . . . , Xnrn is independent and satisfies 1. If 4.3 holds for

all positive ϵ, then

Sn/sn ⇒ N(0, 1).

Theorem 5. (Generalized CLT, [4]) Let X1, . . . be i.i.d. sequence of random variables and Z be a
non-degenerate random variable. For some constants an > 0 and bn ∈ R, an

∑n
i xi − bn converges in

distribution to Z if and only if Z is α-stable for some 0 < α ≤ 2.

5.2 Relationship to WLLN

Theorem 6. (mapping theorem, [Theorem 25.7, 1]) Suppose that h : R → R is measurable and that
the set Dn of its discontinuities is measurable. If µn ⇒ µ and µ(Dn) = 0, then µnh

−1 ⇒ µh−1.

Corollary 1. CLT implies WLLN.

Proof. Assuming classical CLT, theorem 6 implies that
√
n(Sn

n − c) ⇒ N (0, σ). For an arbitrary ϵ > 0,
take a natural number N ∈ N such that

∀t ∈ R, ∀n ≥ N,
∣∣F√

n(Xn−c) − FZ(t)
∣∣ < 1

2n
.

For some random variable Z ∼ N (0, 1), it follows that

P (|Xn − c| ≥ ϵ) = P (
√
n|Xn − c| ≥

√
nϵ)

= P (
√
n(Xn − c) ≥

√
nϵ) + P (

√
n(Xn − c) ≤ −

√
nϵ)

≤ 1− (FZ(
√
nϵ)− 1

2n
) + FZ(−

√
nϵ) +

1

2n

= (1− FZ(
√
nϵ)) +

1

n
+ FZ(−

√
nϵ),

(2)

where all the terms vanish in the last equation 2, when n → ∞.
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