

The Fractions

Shinobu Yokoyama

January 6, 2026

Fractions are deceptively difficult. I have seen many parents agonize over how to explain concepts like $1/4$ or $2/5$ to an eight-year-old without simply resorting to rote formal operations. Paradoxically, I only fully realized the complexity of basic fractions by taking a detour into deep theory. While reading Weibel's *An Introduction to Homological Algebra*, I found a fascinating exposition on the categorification of fractions—known as localization.

A quick technical note. For the sake of rigor, we assume all categories discussed here belong to a Grothendieck universe and that the multiplicative system is locally small on the left. However, these set-theoretic details are not the focus of the article.

1 Multiplicative System

Definition 1. A multiplicative system S in a category C is a collection of morphisms that satisfies the following three self-dual axioms:

1. S is closed under composition and contains all identity morphisms for all objects in C ;
2. **(Ore condition)** For each pair $g \in \text{Mor}(C)$, $t \in S$ with

$$X \xrightarrow{g} Y \xleftarrow{t} Z,$$

there exists a weak pullback $f \in \text{Mor}(C)$, $s \in S$ such that $gs = tf$ in C . The dual statement also holds (existence of a weak pushout).

3. **(Cancellation)** For each pair of parallel morphisms $f, g : X \rightarrow Y$ in C , the following are equivalent:
 - (a) there exists a weak coequalizer of f, g in S , namely $sf = sg$ for some $s \in S$ with $\text{dom}(s) = Y$;
 - (b) there exists a weak equalizer of f, g in S , namely $ft = gt$ for some $t \in S$ with $\text{codom}(t) = X$.

1.1 The Spirit of the Ore Condition: Right (Left) Permutability

Origin of the Name

The term comes from the Norwegian mathematician Øystein Ore. In 1931, he studied the problem of embedding a non-commutative ring into a division ring. He discovered that one cannot always form a field of fractions for a non-commutative ring; this is possible only if the ring satisfies the Ore condition.

Intuition

In the localized category $C[S^{-1}]$, we want to compose a “fraction” fs^{-1} with a morphism g :

$$(X \xleftarrow{s} X' \xrightarrow{f} Y) \circ (Y \xrightarrow{g} Z).$$

This composition is $g \circ f \circ s^{-1}$, which is well-defined.

However, composing two fractions,

$$(fs^{-1}) \circ (gt^{-1}),$$

formally gives $f \circ s^{-1} \circ g \circ t^{-1}$. To rewrite this as a single fraction, we must move s^{-1} past g . That is, we seek g' and s' such that

$$s^{-1} \circ g = g' \circ (s')^{-1},$$

or equivalently,

$$g \circ s' = s \circ g'.$$

This is precisely the Ore condition. It ensures that any zigzag can be reduced to a single roof (a span $X \xleftarrow{s} Z \xrightarrow{f} Y$).

1.2 The Spirit of Cancellation: Zero Divisors

In ring theory,

$$\frac{a}{s} = \frac{b}{s} \iff t(a - b) = 0 \text{ for some } t \in S,$$

which implies $ta = tb$.

Categorically, this corresponds to the existence and cancellability of morphisms in S . The equivalence of conditions (3.a) and (3.b) ensures that it does not matter on which side one multiplies, enforcing that elements of S behave like isomorphisms.

With these axioms, every morphism in $C[S^{-1}]$ is representable as a fraction fs^{-1} .

2 Localization

Definition 2. Let S be a collection of morphisms in a category C . A localization $C[S^{-1}]$ is a category together with a universal functor $q : C \rightarrow C[S^{-1}]$ such that any functor $F : C \rightarrow D$ sending every $s \in S$ to an isomorphism factors uniquely through q .

This definition ensures uniqueness of $C[S^{-1}]$ up to equivalence, and that $q(s)$ is an isomorphism for all $s \in S$.

However, the definition alone does not provide a concrete description of morphisms in $C[S^{-1}]$. This is the problem of constructability.

3 Construction of Localization

Calculus of Fractions

There are two primary constructions: the general zig-zag construction and the calculus of fractions.¹

¹Weibel follows the calculus of fractions approach, defining morphisms via equivalence classes of roofs. [1]

Definition 3. Given a multiplicative system S in a category C , a (left) fraction is a diagram

$$fs^{-1} : X \xleftarrow{s} X_1 \xrightarrow{f} Y,$$

where $s \in S$ and $f \in \text{Mor}(C)$.

Let $F(S)$ denote the collection of all such fractions. An equivalence relation \sim on $F(S)$ yields

$$C[S^{-1}] \cong F(S)/\sim.$$

Definition 4. Two fractions

$$X \xleftarrow{s} X_1 \xrightarrow{f} Y \quad \text{and} \quad X \xleftarrow{t} X_2 \xrightarrow{g} Y$$

are equivalent if there exists a third fraction

$$X \xleftarrow{u} X_3 \xrightarrow{h} Y$$

such that the following diagram commutes:

$$\begin{array}{ccccc} & & X_1 & & \\ & \swarrow s & \uparrow & \searrow f & \\ X & \xleftarrow{u} & X_3 & \xrightarrow{h} & Y \\ & \nwarrow t & \downarrow & \nearrow g & \\ & & X_2 & & \end{array}$$

This is known as a *common roof* or *common span*. It plays the role of a common denominator in ordinary fractions.

In commutative algebra, $\frac{a}{s} = \frac{b}{t}$ if and only if $at = bs$. In a general category, domains differ and morphisms do not commute, so we require a common refinement.

An illustrative numerical analogy is:

$$\begin{array}{ccccc} & & X_1 & & \\ & \swarrow 3 & \uparrow 4 & \searrow 2 & \\ X & \xleftarrow{12} & X_3 & \xrightarrow{8} & Y \\ & \nwarrow 6 & \downarrow 2 & \nearrow 4 & \\ & & X_2 & & \end{array}$$

Finally, defining equivalence via a single morphism $X_1 \rightarrow X_2$ would destroy symmetry. The common roof construction ensures symmetry and transitivity, relying crucially on the Ore condition.

References

[1] Charles A. Weibel. *An Introduction to Homological Algebra*. Vol. 38. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1994. ISBN: 978-0-521-55987-4.